Home
Class 12
MATHS
If sin theta+sqrt(3)costheta=6y-y^2-11 ...

If `sin theta+sqrt(3)costheta=6y-y^2-11 ,theta in [0, 4pi], y in R` holds for

A

no values of x and ` theta `

B

one value of x and two values of ` theta `

C

two values of x and two values of ` theta `

D

two pairs of values of `(x, theta ) `

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

sintheta+sqrt(3)costheta=6x-x^2-11 ,0lt=thetalt=4pi,x in R , (a) hold for no values of x and theta (b) one value of x and two values of theta (c) two values of x and two values of theta (d) two point of values of (x ,theta)

If beta is one of the angles between the normals to the ellipse, x^2+3y^2=9 at the points (3 cos theta, sqrt(3) sin theta)" and "(-3 sin theta, sqrt(3) cos theta), theta in (0,(pi)/(2)) , then (2 cot beta)/(sin 2 theta) is equal to:

If y=(sin 3theta)/(sintheta), theta nen pi, then

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

If sin theta-sqrt(6)costheta=sqrt(7)costheta. Prove that cos theta+sqrt6 sin theta-sqrt7 sin theta=0.

Solution set of 4 sintheta*costheta-2 costheta-2sqrt3 sin theta+sqrt3 = 0 in the interval (0, 2 pi) is

The solution of the equation cos^2theta-2costheta=4sintheta-sin2theta where theta in [0,pi] is

If P (sin theta, 1//sqrt(2)) and Q(1//sqrt(2), cos theta), -pi le theta le pi are two points on the same side of the line x-y=0, then theta belongs to the interval

Tangent is drawn to ellipse (x^2)/(27)+y^2=1 at (3sqrt(3)costheta,sintheta) [where theta in (0,pi/2)] Then the value of theta such that sum of intercepts on axes made by this tangent is minimum is (a) pi/3 (b) pi/6 (c) pi/8 (d) pi/4

If (alpha, beta) is a point of intersection of the lines xcostheta +y sin theta= 3 and x sin theta-y cos theta= 4 where theta is parameter, then maximum value of 2^((alpha+beta)/(sqrt(2)) is