Home
Class 12
MATHS
If |{:(1,cos alpha, cos beta),(cos alpha...

If `|{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}|` then the value of `cos^2 alpha + cos^2 beta + cos^2 gamma` is : (a) `1` (b) `1/2` (c) `3/8` (d) `9/4`

A

1

B

`1/2`

C

`3/8`

D

`9/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants given in the question and set them equal to each other. ### Step-by-Step Solution: 1. **Set up the determinants:** We have two determinants: \[ D_1 = \begin{vmatrix} 1 & \cos \alpha & \cos \beta \\ \cos \alpha & 1 & \cos \gamma \\ \cos \beta & \cos \gamma & 1 \end{vmatrix} \] and \[ D_2 = \begin{vmatrix} 0 & \cos \alpha & \cos \beta \\ \cos \alpha & 0 & \cos \gamma \\ \cos \beta & \cos \gamma & 0 \end{vmatrix} \] 2. **Expand \(D_1\):** We will expand \(D_1\) along the first row: \[ D_1 = 1 \cdot \begin{vmatrix} 1 & \cos \gamma \\ \cos \gamma & 1 \end{vmatrix} - \cos \alpha \cdot \begin{vmatrix} \cos \alpha & \cos \gamma \\ \cos \beta & 1 \end{vmatrix} + \cos \beta \cdot \begin{vmatrix} \cos \alpha & 1 \\ \cos \beta & \cos \gamma \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} 1 & \cos \gamma \\ \cos \gamma & 1 \end{vmatrix} = 1 - \cos^2 \gamma = \sin^2 \gamma \] Now for the second determinant: \[ \begin{vmatrix} \cos \alpha & \cos \gamma \\ \cos \beta & 1 \end{vmatrix} = \cos \alpha \cdot 1 - \cos \beta \cdot \cos \gamma = \cos \alpha - \cos \beta \cos \gamma \] And for the third determinant: \[ \begin{vmatrix} \cos \alpha & 1 \\ \cos \beta & \cos \gamma \end{vmatrix} = \cos \alpha \cdot \cos \gamma - \cos \beta \cdot 1 = \cos \alpha \cos \gamma - \cos \beta \] Putting it all together: \[ D_1 = \sin^2 \gamma - \cos \alpha (\cos \alpha - \cos \beta \cos \gamma) + \cos \beta (\cos \alpha \cos \gamma - \cos \beta) \] Simplifying: \[ D_1 = \sin^2 \gamma - \cos^2 \alpha + \cos \alpha \cos \beta \cos \gamma + \cos \beta \cos \alpha \cos \gamma - \cos^2 \beta \] \[ D_1 = \sin^2 \gamma - \cos^2 \alpha - \cos^2 \beta + 2 \cos \alpha \cos \beta \cos \gamma \] 3. **Expand \(D_2\):** We will expand \(D_2\) along the first row: \[ D_2 = 0 - \cos \alpha \cdot \begin{vmatrix} \cos \alpha & \cos \gamma \\ \cos \beta & 0 \end{vmatrix} + \cos \beta \cdot \begin{vmatrix} \cos \alpha & 0 \\ \cos \beta & \cos \gamma \end{vmatrix} \] The first determinant: \[ \begin{vmatrix} \cos \alpha & \cos \gamma \\ \cos \beta & 0 \end{vmatrix} = 0 - \cos \beta \cos \gamma = -\cos \beta \cos \gamma \] The second determinant: \[ \begin{vmatrix} \cos \alpha & 0 \\ \cos \beta & \cos \gamma \end{vmatrix} = \cos \alpha \cos \gamma \] Thus: \[ D_2 = \cos \alpha \cos \beta \cos \gamma + \cos \beta \cdot \cos \alpha \cos \gamma = 2 \cos \alpha \cos \beta \cos \gamma \] 4. **Set the determinants equal:** We have: \[ D_1 = D_2 \] Therefore: \[ \sin^2 \gamma - \cos^2 \alpha - \cos^2 \beta + 2 \cos \alpha \cos \beta \cos \gamma = 2 \cos \alpha \cos \beta \cos \gamma \] Simplifying gives: \[ \sin^2 \gamma - \cos^2 \alpha - \cos^2 \beta = 0 \] 5. **Using the identity:** We know that: \[ \sin^2 \gamma = 1 - \cos^2 \gamma \] Substituting this gives: \[ 1 - \cos^2 \gamma - \cos^2 \alpha - \cos^2 \beta = 0 \] Rearranging gives: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \] Thus, the value of \( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If cos alpha + 2 cos beta +3 cos gamma = sin alpha + 2 sin beta + 3 sin gamma y = 0 , then the value of sin 3alpha + 8 sin 3beta + 27 sin 3gamma is

|[1,cos(alpha-beta), cos alpha] , [cos(alpha-beta),1,cos beta] , [cos alpha, cos beta, 1]|

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

Evaluate |{:(cos alpha cos beta,,cos alphasinbeta,,-sinalpha),(-sinbeta,,cos beta,,0),(sinalpha cos beta,,sinalphasinbeta,,cos alpha):}|

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If cos alpha + cos beta + cos gamma = 0 and also sin alpha + sin beta + sin gamma= 0, then prove that: cos 3 alpha + cos 3beta + cos 3gamma = 3 cos (alpha + beta + gamma)

If a line makes angles alpha, beta, gamma with the axes then cos2alpha +cos2beta+cos2gamma = (A) -2 (B) -1 (C) 1 (D) 2