Home
Class 12
MATHS
If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]...

If `A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]|` , `B=|[1,bc, a],[1,ca, b],[1,ab, c]|` , then

A

`Delta_1=Delta_2`

B

`Delta_1=2Delta_2`

C

`Delta_1+Delta_2=0`

D

`Delta_1+2Delta_2=0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If A=[[1, 1,-1],[ 2, 0, 3],[ 3,-1, 2]] , B=[[1, 3],[0,2],[-1, 4]] and C=[[1,2, 3,-4],[ 2, 0,-2, 1]] , find A(BC), (AB)C and show that (A B)C = A(B C) .

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a b+b c+c a) .

|[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|=|[a,b,c],[b,c,a],[c,a,b]|^2

By using properties of determinants. Show that: (i) |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a) (ii) |[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

Using properties of determinants, prove the following: |[a^2 + 1,ab, ac], [ab,b^2 + 1,b c],[ca, cb, c^2+1]|=1+a^2+b^2+c^2

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2