Home
Class 12
MATHS
If [sin^(-1)(cos^(-1)1(tan^(-1)x)))]=1 ...

If `[sin^(-1)(cos^(-1)1(tan^(-1)x)))]=1` where [.] denotes integer function, then complete set of values of x is :

A

`[tan(sin(cos1)), tan(cos(sin1))]`

B

`[tan(sin(cos1)), tan(sin(cos(sin1)))]`

C

`[tan(cos(sin1)), tan(sin(cos(sin1)))]`

D

`[tan(sin(cos1)), 1]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

If [sin ^(-1)(cos^(-1)(sin^(-1)(tan^( -1)x)))]=1 where [.] denotes integer function, then complete set of values of x is :

If [cot^(-1)x]+[cos^(-1)x]=0 , where [] denotes the greatest integer functions, then the complete set of values of x is (cos1,1) (b) cos1,cos1) (cot1,1) (d) none of these

If [cot^(-1)x]+[cos^(-1)x]=0 , where [] denotes the greatest integer functions, then the complete set of values of x is (a) (cos1,1) (b) cos1,cos1) (c) (cot1,1] (d) none of these

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is discontinous at

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the