Home
Class 12
MATHS
Domain (D) and range (R) of f(x)=sin^(-1...

Domain (D) and range (R) of `f(x)=sin^(-1)(cos^(-1)[x]),` where [.] denotes the greatest integer function, is `D-=x in [1,2],R in {0}` D`-=x in 90 ,1],R-={-1,0,1}` `-=x in [-1,1],R-={0,sin^(-1)(pi/2),sin^(-1)(pi)}` `-=x in [-1,1],R-={-pi/2,0,pi/2}`

A

`D-=[1, 2), R-={0}`

B

`D-=[0,1), R-={-1, 0,1}`

C

`D-=[-1, 1), R-={0, (pi)/(2), pi}`

D

`D-=[-1,1], R-={-(pi)/(2), 0, (pi)/(2)}`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The range of f(x)=[|sin x|+|cosx"|""]"dot Where [.] denotes the greatest integer function, is {0} (b) {0,1} (c) {1} (d) none of these

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is (a) {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these