Home
Class 12
MATHS
The value of x satisfying the equation ...

The value of `x` satisfying the equation
`(sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16)` is : (a) `"cos"(pi)/(5)` (b) `"cos"(pi)/(4)` (c) `"cos"(pi)/(8)` (d) `"cos"(pi)/(12)`

A

`"cos"(pi)/(5)`

B

`"cos"(pi)/(4)`

C

`"cos"(pi)/(8)`

D

`"cos"(pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ (\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x)(\cos^{-1} x)(\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}, \] we will follow these steps: ### Step 1: Define Variables Let \( A = \sin^{-1} x \) and \( B = \cos^{-1} x \). ### Step 2: Rewrite the Equation The equation can be rewritten using \( A \) and \( B \): \[ A^3 - B^3 + AB(A - B) = \frac{\pi^3}{16}. \] ### Step 3: Apply the Identity for Difference of Cubes Recall the identity for the difference of cubes: \[ A^3 - B^3 = (A - B)(A^2 + AB + B^2). \] Using this identity, we can rewrite the equation: \[ (A - B)(A^2 + AB + B^2) + AB(A - B) = \frac{\pi^3}{16}. \] ### Step 4: Factor Out \( A - B \) Factor out \( A - B \): \[ (A - B)(A^2 + AB + B^2 + AB) = \frac{\pi^3}{16}. \] This simplifies to: \[ (A - B)(A^2 + 2AB + B^2) = \frac{\pi^3}{16}. \] ### Step 5: Recognize the Perfect Square Notice that \( A^2 + 2AB + B^2 = (A + B)^2 \): \[ (A - B)(A + B)^2 = \frac{\pi^3}{16}. \] ### Step 6: Use the Identity for \( A + B \) We know that: \[ A + B = \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}. \] Thus, we can substitute: \[ (A - B)\left(\frac{\pi}{2}\right)^2 = \frac{\pi^3}{16}. \] ### Step 7: Simplify the Equation Substituting \( \left(\frac{\pi}{2}\right)^2 \): \[ (A - B)\left(\frac{\pi^2}{4}\right) = \frac{\pi^3}{16}. \] ### Step 8: Solve for \( A - B \) Now, we can solve for \( A - B \): \[ A - B = \frac{\pi^3}{16} \cdot \frac{4}{\pi^2} = \frac{\pi}{4}. \] ### Step 9: Solve for \( B \) We have two equations now: 1. \( A + B = \frac{\pi}{2} \) 2. \( A - B = \frac{\pi}{4} \) Adding these two equations: \[ 2A = \frac{\pi}{2} + \frac{\pi}{4} = \frac{2\pi + \pi}{4} = \frac{3\pi}{4} \implies A = \frac{3\pi}{8}. \] Now, substituting \( A \) back to find \( B \): \[ B = \frac{\pi}{2} - A = \frac{\pi}{2} - \frac{3\pi}{8} = \frac{4\pi - 3\pi}{8} = \frac{\pi}{8}. \] ### Step 10: Find \( x \) Since \( B = \cos^{-1} x \), we have: \[ \cos^{-1} x = \frac{\pi}{8} \implies x = \cos\left(\frac{\pi}{8}\right). \] ### Conclusion Thus, the value of \( x \) satisfying the equation is: \[ \boxed{\cos\left(\frac{\pi}{8}\right)}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(-1) x)^(3) = a pi^(3) is

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve: sin^(-1)x=pi/6+cos^(-1)x

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

If y="sec"(tan^(-1)x),t h e n (dy)/(dx) at x=1 is (a) cos(pi/4) (b) sin(pi/2) (c) sin(pi/6) (d) cos(pi/3)