Home
Class 12
MATHS
The complete solution set of the equati...

The complete solution set of the equation
`sin^(-1) sqrt((1+x)/(2))-sqrt(2-x)=cot^(-1)(tan sqrt(2-x))-sin^(-1) sqrt((1-x)/(2))` is :

A

`[2-(pi^(2))/(4),1]`

B

`[1-(pi^(2))/(4), 1]`

C

`[2-(pi^(2))/(4), 0]`

D

`[-1, 1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1} \left( \sqrt{\frac{1+x}{2}} \right) - \sqrt{2-x} = \cot^{-1} \left( \tan \sqrt{2-x} \right) - \sin^{-1} \left( \sqrt{\frac{1-x}{2}} \right), \] we will follow these steps: ### Step 1: Rearranging the Equation We start by moving the term \(\sin^{-1} \left( \sqrt{\frac{1-x}{2}} \right)\) to the left-hand side: \[ \sin^{-1} \left( \sqrt{\frac{1+x}{2}} \right) + \sin^{-1} \left( \sqrt{\frac{1-x}{2}} \right) - \sqrt{2-x} = \cot^{-1} \left( \tan \sqrt{2-x} \right). \] ### Step 2: Using the Property of Inverse Sine Using the property of inverse sine, we can combine the two sine inverse terms: \[ \sin^{-1} \left( \sqrt{\frac{1+x}{2}} \cdot \sqrt{1 - \frac{1-x}{2}} + \sqrt{\frac{1-x}{2}} \cdot \sqrt{1 - \frac{1+x}{2}} \right) - \sqrt{2-x} = \cot^{-1} \left( \tan \sqrt{2-x} \right). \] ### Step 3: Simplifying the Left Side The left-hand side simplifies to: \[ \sin^{-1}(1) - \sqrt{2-x} = \cot^{-1} \left( \tan \sqrt{2-x} \right). \] Since \(\sin^{-1}(1) = \frac{\pi}{2}\), we have: \[ \frac{\pi}{2} - \sqrt{2-x} = \cot^{-1} \left( \tan \sqrt{2-x} \right). \] ### Step 4: Understanding Cotangent Inverse The expression \(\cot^{-1}(\tan \theta)\) simplifies to \(\frac{\pi}{2} - \theta\) when \(\theta\) is in the range \((0, \frac{\pi}{2})\). Thus, we can write: \[ \frac{\pi}{2} - \sqrt{2-x} = \frac{\pi}{2} - \sqrt{2-x}. \] ### Step 5: Setting Up the Inequalities For the equation to hold, we need: \[ \sqrt{2-x} \in (0, \frac{\pi}{2}). \] This leads to the inequalities: 1. \(2 - x > 0 \Rightarrow x < 2\) 2. \(2 - x < \frac{\pi^2}{4} \Rightarrow x > 2 - \frac{\pi^2}{4}\) ### Step 6: Final Solution Set Thus, the complete solution set for \(x\) is: \[ 2 - \frac{\pi^2}{4} < x < 2. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2