Home
Class 12
MATHS
Let f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x))...

Let `f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x))` then which of the following is correct :

A

f(x) has only one integer in its range

B

Range of f(x) is `(-(pi)/(4), (pi)/(4))-{0}`

C

Range of f(x) is `(-(pi)/(2), (pi)/(2))-{0}`

D

Range of f(x) is `[ -(pi)/(4), (pi)/(4)]-{0}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \) and find its range. ### Step 1: Rewrite the function We start with the function: \[ f(x) = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] ### Step 2: Substitute \( x = \tan(\theta) \) Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, substituting this into the function gives: \[ f(x) = \tan^{-1}\left(\frac{\sec(\theta) - 1}{\tan(\theta)}\right) \] ### Step 3: Simplify the expression Using the identity \( \sec(\theta) = \frac{1}{\cos(\theta)} \) and \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \), we can rewrite the function: \[ f(x) = \tan^{-1}\left(\frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}}\right) = \tan^{-1}\left(\frac{1 - \cos(\theta)}{\sin(\theta)}\right) \] ### Step 4: Use half-angle identities Using the half-angle identities, we know: \[ 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \quad \text{and} \quad \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \] Substituting these into the function gives: \[ f(x) = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}\left(\frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)}\right) \] ### Step 5: Simplify further This simplifies to: \[ f(x) = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2} \] Since \( \theta = \tan^{-1}(x) \), we have: \[ f(x) = \frac{1}{2}\tan^{-1}(x) \] ### Step 6: Determine the range of \( f(x) \) The range of \( \tan^{-1}(x) \) is \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). Therefore, the range of \( f(x) \) is: \[ \text{Range of } f(x) = \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \] ### Step 7: Exclude zero from the range Since the function \( f(x) \) approaches an indeterminate form when \( x \) approaches 0, we exclude 0 from the range. Thus, the final range of \( f(x) \) is: \[ \text{Range of } f(x) = \left(-\frac{\pi}{4}, 0\right) \cup \left(0, \frac{\pi}{4}\right) \] ### Conclusion Thus, the correct option is the one that states the range of \( f(x) \) is \( \left(-\frac{\pi}{4}, 0\right) \cup \left(0, \frac{\pi}{4}\right) \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," then "(f''(x))/(f(x))=1640x^(2) "II. "(d)/(dx){tan^(-1)((2x)/(1-x^(2)))}=(1)/(1+x^(2)) Which of the following is correct ?

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

Let f(x)=sin^(-1)x and g(x)=cos^(-1)x , then which of the following statements are correct?

If f(x)=(1)/(sqrt(1-x^(2))) , which of the following describes all the real values of x for which f(x) is undefined ?

Let f(x)=cos^(-1)((1-tan^(2)(x)/(2))/(1+tan^(2)(x)/(2))) . Then which of the following statement is/are true ?

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

Let f(x) = sin (sin^-1 2x) + cosec (cosec^-1 2x) + tan(tan^-1 2x) , then which one of the following statements is/are incorrect ?

Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the following is(are) correct ?

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then