Home
Class 12
MATHS
The sum of the series cot^(-1)((9)/(2))...

The sum of the series `cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo` is equal to :

A

`cot^(-1)(2)`

B

`cot^(-1)(3)`

C

`cot^(-1)(-1)`

D

`cot^(-1)(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( S = \cot^{-1}\left(\frac{9}{2}\right) + \cot^{-1}\left(\frac{33}{4}\right) + \cot^{-1}\left(\frac{129}{8}\right) + \ldots \), we will use the identity for the difference of inverse cotangents. ### Step 1: Identify the pattern in the series We observe that the terms in the series can be expressed in terms of the cotangent inverse difference identity: \[ \cot^{-1}(x) - \cot^{-1}(y) = \cot^{-1}\left(\frac{1 + xy}{y - x}\right) \] We will rewrite the series in a form that allows us to apply this identity. ### Step 2: Rewrite the terms The first term is \( \cot^{-1}\left(\frac{9}{2}\right) \). We can express the subsequent terms in a similar manner: - The second term \( \cot^{-1}\left(\frac{33}{4}\right) \) can be rewritten using the identity. - The third term \( \cot^{-1}\left(\frac{129}{8}\right) \) can also be rewritten. ### Step 3: Apply the identity Using the identity, we can express the series as: \[ S = \cot^{-1}(2) - \cot^{-1}(4) + \cot^{-1}(4) - \cot^{-1}(8) + \cot^{-1}(8) - \cot^{-1}(16) + \ldots \] This shows that each term cancels with the next, leading to a telescoping series. ### Step 4: Simplify the series After cancellation, we are left with: \[ S = \cot^{-1}(2) - \lim_{n \to \infty} \cot^{-1}(2^n) \] As \( n \to \infty \), \( \cot^{-1}(2^n) \to 0 \). ### Step 5: Final result Thus, we have: \[ S = \cot^{-1}(2) \] ### Conclusion The sum of the series is: \[ \boxed{\cot^{-1}(2)} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

The sum of the infinite series cot^(-1)(7/4)+cot^(-1)((19)/4) +cot^(-1)((39)/4)....oo

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2^3+1/(2^2))+cot^(- 1)(2^4+1/(2^3))+... is

cot^(2)x-(1)/(2)cot^(4)x+(1)/(3)cot^(6)x -(1)/(4)cot^(8)x+…oo=

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

If the sum of first 16 terms of the series s=cot^(-1)(2^2+1/2)+cot^(-1)(2^3+1/(2^2))+cot^(-1)(2^4+1/(2^3))+ up to terms is cot^(-1)((1+2^n)/(2(2^(16)-1))) , then find the value of ndot

cot^(-1)(-2) is equal to

Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi .