Home
Class 12
MATHS
If 3 le a lt 4 then the value of sin^(-...

If `3 le a lt 4` then the value of `sin^(-1)(sin[a])+tan^(-1)(tan[a])+sec^(-1)(sec[a])`, where [x] denotes greatest integer function less than or equal to x, is equal to :

A

3

B

`2pi-9`

C

`2pi-3`

D

`9-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \sin^{-1}(\sin[a]) + \tan^{-1}(\tan[a]) + \sec^{-1}(\sec[a]) \) given the condition \( 3 \leq a < 4 \). ### Step-by-Step Solution: 1. **Identify the Greatest Integer Function**: Since \( a \) is in the range \( 3 \leq a < 4 \), the greatest integer function \( [a] \) is equal to 3. Thus, we can rewrite the expression as: \[ \sin^{-1}(\sin[3]) + \tan^{-1}(\tan[3]) + \sec^{-1}(\sec[3]) \] 2. **Evaluate \( \sin^{-1}(\sin[3]) \)**: The value of \( 3 \) is in the interval \( \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \). For values of \( x \) in this interval, the property of the sine inverse function gives us: \[ \sin^{-1}(\sin x) = \pi - x \] Therefore: \[ \sin^{-1}(\sin[3]) = \pi - 3 \] 3. **Evaluate \( \tan^{-1}(\tan[3]) \)**: Similarly, since \( 3 \) is also in the interval \( \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \), we use the property of the tangent inverse function: \[ \tan^{-1}(\tan x) = x - \pi \] Thus: \[ \tan^{-1}(\tan[3]) = 3 - \pi \] 4. **Evaluate \( \sec^{-1}(\sec[3]) \)**: The value of \( 3 \) is in the interval \( (0, \pi) \), where the secant inverse function behaves as: \[ \sec^{-1}(\sec x) = x \] Therefore: \[ \sec^{-1}(\sec[3]) = 3 \] 5. **Combine All Parts**: Now we can combine all the evaluated parts: \[ \sin^{-1}(\sin[3]) + \tan^{-1}(\tan[3]) + \sec^{-1}(\sec[3]) = (\pi - 3) + (3 - \pi) + 3 \] Simplifying this gives: \[ = \pi - 3 + 3 - \pi + 3 = 3 \] ### Final Answer: Thus, the value of the expression is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0) , where [x] denotes the greatest integer less than or equal to x is equal to:

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

lim(x->a_-) {(|x|^3)/a-[x/a]^3} ,(a < 0) , where [x] denotes the greatest integer less than or equal to x is equal to:

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

The domain of the function f(x)=cos^(-1)[secx] , where [x] denotes the greatest integer less than or equal to x, is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is