Home
Class 12
MATHS
Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-...

Range of `f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2]` ([.] denotes greatest integer function)

A

`{-(pi)/(2), 0}`

B

`{(pi)/(2), 2pi}`

C

`{(pi)/(4), (pi)/(2)}`

D

`{(3pi)/(2), 2pi}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}(x-1) + 2\cos^{-1}(x-2) \), we will analyze the components of the function step by step. ### Step 1: Determine the domain of the function The function involves the inverse sine and inverse cosine functions. - The domain of \( \sin^{-1}(x-1) \) is \( -1 \leq x - 1 \leq 1 \), which simplifies to \( 0 \leq x \leq 2 \). - The domain of \( \cos^{-1}(x-2) \) is \( -1 \leq x - 2 \leq 1 \), which simplifies to \( 1 \leq x \leq 3 \). The overall domain of \( f(x) \) is the intersection of these two intervals: \[ [1, 2] \] ### Step 2: Analyze \( f(x) \) within the domain Now, we will evaluate \( f(x) \) at the endpoints of the domain and check for any critical points within the interval. 1. **At \( x = 1 \)**: \[ f(1) = \sin^{-1}(1-1) + 2\cos^{-1}(1-2) = \sin^{-1}(0) + 2\cos^{-1}(-1) = 0 + 2\left(\pi\right) = 2\pi \] 2. **At \( x = 2 \)**: \[ f(2) = \sin^{-1}(2-1) + 2\cos^{-1}(2-2) = \sin^{-1}(1) + 2\cos^{-1}(0) = \frac{\pi}{2} + 2\left(\frac{\pi}{2}\right) = \frac{\pi}{2} + \pi = \frac{3\pi}{2} \] ### Step 3: Determine the behavior of \( f(x) \) in the interval To find if there are any critical points, we can differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[\sin^{-1}(x-1)] + 2\frac{d}{dx}[\cos^{-1}(x-2)] \] Using the derivatives: \[ \frac{d}{dx}[\sin^{-1}(u)] = \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}, \quad \text{and} \quad \frac{d}{dx}[\cos^{-1}(u)] = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \] where \( u = x-1 \) for sine and \( u = x-2 \) for cosine. Calculating these derivatives: \[ f'(x) = \frac{1}{\sqrt{1-(x-1)^2}} - \frac{2}{\sqrt{1-(x-2)^2}} \] ### Step 4: Evaluate the critical points We check \( f'(x) \) at \( x = 1 \) and \( x = 2 \) to see if it changes sign: - At \( x = 1 \), \( f'(1) \) is positive. - At \( x = 2 \), \( f'(2) \) is negative. This indicates that \( f(x) \) is decreasing in the interval \( [1, 2] \). ### Step 5: Conclusion The maximum value of \( f(x) \) occurs at \( x = 1 \) and is \( 2\pi \), while the minimum value occurs at \( x = 2 \) and is \( \frac{3\pi}{2} \). Thus, the range of \( f(x) \) is: \[ \left[ \frac{3\pi}{2}, 2\pi \right] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the greatest integer function).

Consider f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1) ( where [.] denotes greatest integer function .) If domain of f(x) " is " [a,b) and the range of f(x) is {c,d}" then " a + b + (2d)/c is equal to ( where c lt d )

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is (a) {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.