Home
Class 12
MATHS
The value of tan^(-1)(sqrt3)+cos^(-1)((-...

The value of `tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3)` is

A

`-pi/12`

B

`(11pi)/12`

C

`(5pi)/4`

D

`(23pi)/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(\sqrt{3}) + \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) + \sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \tan^{-1}(\sqrt{3}) \) The value of \( \tan^{-1}(\sqrt{3}) \) corresponds to the angle whose tangent is \( \sqrt{3} \). We know that: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, \[ \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \] ### Step 2: Evaluate \( \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) \) The value of \( \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) \) corresponds to the angle whose cosine is \( -\frac{1}{\sqrt{2}} \). We know that: \[ \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}} \] Thus, \[ \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4} \] ### Step 3: Evaluate \( \sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) \) The value of \( \sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) \) corresponds to the angle whose secant is \( -\frac{2}{\sqrt{3}} \). We know that: \[ \sec\left(\frac{5\pi}{6}\right) = -\frac{2}{\sqrt{3}} \] Thus, \[ \sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) = \frac{5\pi}{6} \] ### Step 4: Combine the values Now we can combine all the evaluated values: \[ \tan^{-1}(\sqrt{3}) + \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) + \sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) = \frac{\pi}{3} + \frac{3\pi}{4} + \frac{5\pi}{6} \] ### Step 5: Find a common denominator The common denominator for \( 3, 4, \) and \( 6 \) is \( 12 \). We convert each term: \[ \frac{\pi}{3} = \frac{4\pi}{12}, \quad \frac{3\pi}{4} = \frac{9\pi}{12}, \quad \frac{5\pi}{6} = \frac{10\pi}{12} \] ### Step 6: Add the fractions Now we add the fractions: \[ \frac{4\pi}{12} + \frac{9\pi}{12} + \frac{10\pi}{12} = \frac{4\pi + 9\pi + 10\pi}{12} = \frac{23\pi}{12} \] ### Final Answer Thus, the value of \( \tan^{-1}(\sqrt{3}) + \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) + \sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) \) is: \[ \frac{23\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

The vlaue of tan^(-1)sqrt(3)-sec^(-1)(-2)+cosec^(-1)(2)/sqrt(3) is

find the value of sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2)

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

Find the value of sin^(-1)(sqrt3/2)+cos^(-1)(-1)+tan^(-1)(-1)

Find the principal value of cot^(-1)(-sqrt3)+2cosec^(-1)(-2)+cos^(-1)(-sqrt3/2)

The value of tan[(1)/(2)cos^(-1)((sqrt(5))/(3))] is :

Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^(-1)(-2)

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. The principal value of cot^(-1)x lie in

    Text Solution

    |

  2. The principal values of sec^(-1)x lie in

    Text Solution

    |

  3. The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3)...

    Text Solution

    |

  4. The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

    Text Solution

    |

  5. The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

    Text Solution

    |

  6. Evaluate each of the following: sin^(-1)(sinpi/6) (ii) sin^(-1)(sin...

    Text Solution

    |

  7. Evaluate each of the following: sin^(-1)(sin(2pi)/3) (ii) cos^(-1)(...

    Text Solution

    |

  8. sin(cos^(-1)(3/5)) is equal to

    Text Solution

    |

  9. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  10. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, Then x^2013+y^2013+z^2013-9/...

    Text Solution

    |

  12. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  13. 1/2tan^(- 1)(12/5) is equal to

    Text Solution

    |

  14. Value of sec^(-1)(sec.(4pi)/3) is

    Text Solution

    |

  15. Find the value of the expression: sin(2\ tan^(-1)1/3)+cos(tan^(-1)...

    Text Solution

    |

  16. Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

    Text Solution

    |

  17. cos^(-1)(-x),absx le 1, is equal to

    Text Solution

    |

  18. cosec^(-1)(-x),x in R-(-1,1), is equal to

    Text Solution

    |

  19. cot^(-1)(-2) is equal to

    Text Solution

    |

  20. If sin{cot^-1(x+1)}="cos"(tan^(-1)x), then find x

    Text Solution

    |