Home
Class 12
MATHS
The numerical value of "tan"(2tan^(-1)(1...

The numerical value of `"tan"(2tan^(-1)(1/5)-pi/4` is equal to____

A

`5/12`

B

`-5/12`

C

`7/17`

D

`-7/17`

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerical value of \( \tan\left(2\tan^{-1}\left(\frac{1}{5}\right) - \frac{\pi}{4}\right) \), we can follow these steps: ### Step 1: Let \( x = 2\tan^{-1}\left(\frac{1}{5}\right) \) This means that \( \tan^{-1}\left(\frac{1}{5}\right) = \frac{x}{2} \). ### Step 2: Find \( \tan(x) \) Using the double angle formula for tangent, we have: \[ \tan(x) = \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] where \( \theta = \tan^{-1}\left(\frac{1}{5}\right) \). Thus, \( \tan(\theta) = \frac{1}{5} \). ### Step 3: Substitute \( \tan(\theta) \) into the formula Substituting \( \tan(\theta) \): \[ \tan(x) = \frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2} \] Calculating \( \left(\frac{1}{5}\right)^2 = \frac{1}{25} \): \[ \tan(x) = \frac{\frac{2}{5}}{1 - \frac{1}{25}} = \frac{\frac{2}{5}}{\frac{24}{25}} = \frac{2}{5} \cdot \frac{25}{24} = \frac{10}{24} = \frac{5}{12} \] ### Step 4: Now find \( \tan\left(x - \frac{\pi}{4}\right) \) Using the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)} \] where \( a = x \) and \( b = \frac{\pi}{4} \). We know \( \tan\left(\frac{\pi}{4}\right) = 1 \): \[ \tan\left(x - \frac{\pi}{4}\right) = \frac{\tan(x) - 1}{1 + \tan(x) \cdot 1} \] Substituting \( \tan(x) = \frac{5}{12} \): \[ \tan\left(x - \frac{\pi}{4}\right) = \frac{\frac{5}{12} - 1}{1 + \frac{5}{12}} = \frac{\frac{5}{12} - \frac{12}{12}}{1 + \frac{5}{12}} = \frac{\frac{-7}{12}}{\frac{17}{12}} = \frac{-7}{17} \] ### Final Answer Thus, the numerical value of \( \tan\left(2\tan^{-1}\left(\frac{1}{5}\right) - \frac{\pi}{4}\right) \) is: \[ \frac{-7}{17} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

1/2tan^(- 1)(12/5) is equal to

Write the value of tan(2tan^(-1)(1/5)) .

Write the value of tan(2tan^-1(1/5)) .

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

Write the value of tan^(-1){tan((15pi)/4)}

The principal value of sin^-1 {tan ((-5pi)/4)} is

The numerical value of tan(pi/3)+2tan((2pi)/3)+4tan((4pi)/3)+8tan((8pi)/3) is equal to (A) -5sqrt(3) (B) -5/(sqrt3) (C) 5sqrt(3) (D) 5/(sqrt3)

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

Evaluate: tan{2t a n-1 1/5+pi/4}

Prove that : tan(2tan^(- 1)\ 1/5-pi/4)+7/17=0

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Evaluate each of the following: sin^(-1)(sin(2pi)/3) (ii) cos^(-1)(...

    Text Solution

    |

  2. sin(cos^(-1)(3/5)) is equal to

    Text Solution

    |

  3. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  4. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  5. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, Then x^2013+y^2013+z^2013-9/...

    Text Solution

    |

  6. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  7. 1/2tan^(- 1)(12/5) is equal to

    Text Solution

    |

  8. Value of sec^(-1)(sec.(4pi)/3) is

    Text Solution

    |

  9. Find the value of the expression: sin(2\ tan^(-1)1/3)+cos(tan^(-1)...

    Text Solution

    |

  10. Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

    Text Solution

    |

  11. cos^(-1)(-x),absx le 1, is equal to

    Text Solution

    |

  12. cosec^(-1)(-x),x in R-(-1,1), is equal to

    Text Solution

    |

  13. cot^(-1)(-2) is equal to

    Text Solution

    |

  14. If sin{cot^-1(x+1)}="cos"(tan^(-1)x), then find x

    Text Solution

    |

  15. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  16. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  19. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  20. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |