Home
Class 12
MATHS
1/2tan^(- 1)(12/5) is equal to...

`1/2tan^(- 1)(12/5)` is equal to

A

`tan^(-1)(3/2)`

B

`tan^(-1)(2/3)`

C

`tan^(-1)(3/4)`

D

`tan^(-1)(7/17)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{2} \tan^{-1} \left( \frac{12}{5} \right) \), we will follow these steps: ### Step 1: Set up the equation Let: \[ \theta = \frac{1}{2} \tan^{-1} \left( \frac{12}{5} \right) \] This implies: \[ \tan(2\theta) = \frac{12}{5} \] ### Step 2: Use the double angle formula for tangent The double angle formula for tangent states that: \[ \tan(2\theta) = \frac{2 \tan(\theta)}{1 - \tan^2(\theta)} \] Substituting this into our equation gives: \[ \frac{12}{5} = \frac{2 \tan(\theta)}{1 - \tan^2(\theta)} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying yields: \[ 12(1 - \tan^2(\theta)) = 10 \tan(\theta) \] Expanding this gives: \[ 12 - 12 \tan^2(\theta) = 10 \tan(\theta) \] ### Step 4: Rearrange into a quadratic equation Rearranging the equation results in: \[ 12 \tan^2(\theta) + 10 \tan(\theta) - 12 = 0 \] ### Step 5: Use the quadratic formula We can apply the quadratic formula \( \tan(\theta) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 12 \), \( b = 10 \), and \( c = -12 \): \[ \tan(\theta) = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 12 \cdot (-12)}}{2 \cdot 12} \] Calculating the discriminant: \[ = \frac{-10 \pm \sqrt{100 + 576}}{24} \] \[ = \frac{-10 \pm \sqrt{676}}{24} \] \[ = \frac{-10 \pm 26}{24} \] ### Step 6: Calculate the two possible values for \( \tan(\theta) \) Calculating the two possibilities: 1. \( \tan(\theta) = \frac{16}{24} = \frac{2}{3} \) 2. \( \tan(\theta) = \frac{-36}{24} = -\frac{3}{2} \) ### Step 7: Find the angles Thus, we have: 1. \( \theta = \tan^{-1} \left( \frac{2}{3} \right) \) 2. \( \theta = \tan^{-1} \left( -\frac{3}{2} \right) \) ### Final Result The two possible values for \( \theta \) are: \[ \theta = \tan^{-1} \left( \frac{2}{3} \right) \quad \text{or} \quad \theta = \tan^{-1} \left( -\frac{3}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

2 tan^(-1) (-2) is equal to

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to____

The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to____

tan^(-1)(1/(11))+tan^(-1)(2/(11)) is equal to (a) 0 (b) 1//2 (c) -1 (d) none of these

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to pi (b) 2pi (c) pi/2 (d) none of these

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, Then x^2013+y^2013+z^2013-9/...

    Text Solution

    |

  2. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  3. 1/2tan^(- 1)(12/5) is equal to

    Text Solution

    |

  4. Value of sec^(-1)(sec.(4pi)/3) is

    Text Solution

    |

  5. Find the value of the expression: sin(2\ tan^(-1)1/3)+cos(tan^(-1)...

    Text Solution

    |

  6. Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

    Text Solution

    |

  7. cos^(-1)(-x),absx le 1, is equal to

    Text Solution

    |

  8. cosec^(-1)(-x),x in R-(-1,1), is equal to

    Text Solution

    |

  9. cot^(-1)(-2) is equal to

    Text Solution

    |

  10. If sin{cot^-1(x+1)}="cos"(tan^(-1)x), then find x

    Text Solution

    |

  11. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  12. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  15. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  16. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  17. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  18. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  19. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  20. If cos^(-1)""x/a+cos^(-1)""y/b=theta, Prove that x^(2)/a^(2)-(2xy)/(ab...

    Text Solution

    |