Home
Class 12
MATHS
cos^(-1)(-x),absx le 1, is equal to...

`cos^(-1)(-x),absx le 1`, is equal to

A

`-cos^(-1)x`

B

`cos^(-1)x`

C

`pi/2-cos^(-1)x`

D

`pi/2+sin^(-1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}(-x) \) where \( |x| \leq 1 \), we can follow these steps: ### Step 1: Understand the properties of the inverse cosine function The range of the function \( \cos^{-1}(x) \) is from \( 0 \) to \( \pi \), and its domain is \( [-1, 1] \). Since \( |x| \leq 1 \), \( -x \) will also lie within the domain of the inverse cosine function. **Hint:** Recall the range and domain of the inverse cosine function. ### Step 2: Use the property of inverse cosine We can use the property of the inverse cosine function that states: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] This property helps us relate the cosine of a negative angle to the cosine of a positive angle. **Hint:** Look for properties of inverse trigonometric functions that relate angles. ### Step 3: Substitute the property into the equation Using the property from Step 2, we can substitute: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] **Hint:** Substitute the known property directly into your equation. ### Step 4: Use the relationship between sine and cosine We also know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] From this, we can express \( \cos^{-1}(x) \) as: \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) \] **Hint:** Remember the relationship between sine and cosine inverse functions. ### Step 5: Substitute \( \cos^{-1}(x) \) into the equation Now, substituting \( \cos^{-1}(x) \) into our equation from Step 3: \[ \cos^{-1}(-x) = \pi - \left(\frac{\pi}{2} - \sin^{-1}(x)\right) \] This simplifies to: \[ \cos^{-1}(-x) = \pi - \frac{\pi}{2} + \sin^{-1}(x) = \frac{\pi}{2} + \sin^{-1}(x) \] **Hint:** Simplify the expression carefully to find the final result. ### Final Result Thus, we conclude that: \[ \cos^{-1}(-x) = \frac{\pi}{2} + \sin^{-1}(x) \] ### Summary The final expression for \( \cos^{-1}(-x) \) where \( |x| \leq 1 \) is: \[ \cos^{-1}(-x) = \frac{\pi}{2} + \sin^{-1}(x) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

sin(tan^(-1)x),|x| le 1 is equal to :

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

The set of all x for which log(1+ x) le x is equal to …… .

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

If the line x=a bisects the area under the curve y=(1)/(x^(2)), 1 le x le 9 , then a is equal to

The value of cos(sin^(-1)x + cos^(-1)x) , where |x| le 1 , is

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Find the value of the expression: sin(2\ tan^(-1)1/3)+cos(tan^(-1)...

    Text Solution

    |

  2. Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

    Text Solution

    |

  3. cos^(-1)(-x),absx le 1, is equal to

    Text Solution

    |

  4. cosec^(-1)(-x),x in R-(-1,1), is equal to

    Text Solution

    |

  5. cot^(-1)(-2) is equal to

    Text Solution

    |

  6. If sin{cot^-1(x+1)}="cos"(tan^(-1)x), then find x

    Text Solution

    |

  7. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  8. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  11. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  12. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  13. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  14. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  15. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  16. If cos^(-1)""x/a+cos^(-1)""y/b=theta, Prove that x^(2)/a^(2)-(2xy)/(ab...

    Text Solution

    |

  17. tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

    Text Solution

    |

  18. cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

    Text Solution

    |

  19. If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

    Text Solution

    |

  20. The value of cos^(-1)(-1)+sin^(-1)(1) is

    Text Solution

    |