Home
Class 12
MATHS
if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 ...

if `tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4` then x equals

A

`1/sqrt5`

B

`4/sqrt5`

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Isolate the Inverse Cosine We can rewrite the equation as: \[ \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{4} - \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \] ### Step 2: Use the Identity for Inverse Functions Using the identity \( \tan^{-1}(a) + \cos^{-1}(b) = \frac{\pi}{2} \) when \( a = \tan(\theta) \) and \( b = \cos(\theta) \), we can express: \[ \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) = \theta \implies \cos(\theta) = \frac{2}{\sqrt{5}} \] ### Step 3: Find the Sine of the Angle Using the Pythagorean identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \): \[ \sin^2(\theta) = 1 - \left(\frac{2}{\sqrt{5}}\right)^2 = 1 - \frac{4}{5} = \frac{1}{5} \] Thus, \( \sin(\theta) = \frac{1}{\sqrt{5}} \). ### Step 4: Express Tangent in Terms of Sine and Cosine Now, we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}} = \frac{1}{2} \] ### Step 5: Relate to the Original Equation Since \( \tan^{-1}\left(\frac{1}{x}\right) = \theta \) and \( \tan(\theta) = \frac{1}{2} \), we have: \[ \frac{1}{x} = \frac{1}{2} \implies x = 2 \] ### Step 6: Verify the Solution To verify, substitute \( x = 2 \) back into the original equation: \[ \tan^{-1}\left(\frac{1}{2}\right) + \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \] Calculating \( \tan^{-1}\left(\frac{1}{2}\right) \) gives us the angle whose tangent is \( \frac{1}{2} \), and we already found \( \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \) corresponds to the same angle. Therefore, the equation holds true. ### Final Answer Thus, the value of \( x \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

If tan(cos^(-1)x)="sin"(cot^(-1)(1/2)) then x is equal to- a. 1/sqrt(5) b. 2/sqrt(5) c. 3/sqrt(5) d. sqrt(5)/3

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

If tan^(- 1)\ 1/4+tan^(- 1)\ 2/9=1/2cos^(- 1)x then x is equal to

If cos^-1 ((x^2-1)/(x^2+1))+ tan^-1 ((2x)/(x^2-1)) = (2pi)/3 , then x equal to (A) sqrt(3) (B) 2+sqrt(3) (C) 2-sqrt(3) (D) -sqrt(3)

If cos^-1 ((x^2-1)/(x^2+1))+ tan^-1 ((2x)/(x^2-1)) = (2pi)/3 , then x equal to (A) sqrt(3) (B) 2+sqrt(3) (C) 2-sqrt(3) (D) -sqrt(3)

If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),cot^(-1)(pix)):}] and B=(1)/(pi) [{:(-cos^(-1)(pix), tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),-tan^(-1)(pix)):}] then A-B is equal to

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If sin{cot^-1(x+1)}="cos"(tan^(-1)x), then find x

    Text Solution

    |

  2. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  3. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  6. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  7. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  8. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  9. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  10. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  11. If cos^(-1)""x/a+cos^(-1)""y/b=theta, Prove that x^(2)/a^(2)-(2xy)/(ab...

    Text Solution

    |

  12. tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

    Text Solution

    |

  13. cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

    Text Solution

    |

  14. If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

    Text Solution

    |

  15. The value of cos^(-1)(-1)+sin^(-1)(1) is

    Text Solution

    |

  16. If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

    Text Solution

    |

  17. The domain of the function f(x)=cos^(-1)((2-absx)/4) is

    Text Solution

    |

  18. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  19. tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0, then x is

    Text Solution

    |