Home
Class 12
MATHS
If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)...

If `x_1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x_2=sin^(-1)(3/5)+sin^(-1)((2sqrt2)/3)`, then

A

`x_1 lt x_2`

B

`x_1=x_2`

C

`x_1 gt x_2`

D

Can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between \( x_1 \) and \( x_2 \), where: \[ x_1 = \cos^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{2\sqrt{2}}{3}\right) \] \[ x_2 = \sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) \] ### Step 1: Calculate \( x_1 \) 1. **Identify the angles**: - Let \( \theta = \cos^{-1}\left(\frac{3}{5}\right) \) and \( \alpha = \cos^{-1}\left(\frac{2\sqrt{2}}{3}\right) \). 2. **Find the sides of the triangle**: - For \( \theta \): - Hypotenuse = 5, Base = 3 - Perpendicular = \( \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \) - For \( \alpha \): - Hypotenuse = 3, Base = \( 2\sqrt{2} \) - Perpendicular = \( \sqrt{3^2 - (2\sqrt{2})^2} = \sqrt{9 - 8} = \sqrt{1} = 1 \) 3. **Calculate \( \tan \theta \) and \( \tan \alpha \)**: - \( \tan \theta = \frac{\text{Perpendicular}}{\text{Base}} = \frac{4}{3} \) - \( \tan \alpha = \frac{1}{2\sqrt{2}} \) 4. **Express \( x_1 \) in terms of \( \tan^{-1} \)**: \[ x_1 = \tan^{-1}\left(\frac{4}{3}\right) + \tan^{-1}\left(\frac{1}{2\sqrt{2}}\right) \] 5. **Use the formula for \( \tan^{-1}(a) + \tan^{-1}(b) \)**: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] Here, \( a = \frac{4}{3} \) and \( b = \frac{1}{2\sqrt{2}} \). 6. **Calculate \( ab \)**: \[ ab = \frac{4}{3} \cdot \frac{1}{2\sqrt{2}} = \frac{4}{6\sqrt{2}} = \frac{2}{3\sqrt{2}} \] 7. **Calculate \( x_1 \)**: \[ x_1 = \tan^{-1}\left(\frac{\frac{4}{3} + \frac{1}{2\sqrt{2}}}{1 - \frac{2}{3\sqrt{2}}}\right) \] ### Step 2: Calculate \( x_2 \) 1. **Identify the angles**: - Let \( \theta' = \sin^{-1}\left(\frac{3}{5}\right) \) and \( \alpha' = \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) \). 2. **Find the sides of the triangle**: - For \( \theta' \): - Hypotenuse = 5, Perpendicular = 3 - Base = \( \sqrt{5^2 - 3^2} = \sqrt{16} = 4 \) - For \( \alpha' \): - Hypotenuse = 3, Perpendicular = \( 2\sqrt{2} \) - Base = \( \sqrt{3^2 - (2\sqrt{2})^2} = \sqrt{1} = 1 \) 3. **Calculate \( \tan \theta' \) and \( \tan \alpha' \)**: - \( \tan \theta' = \frac{3}{4} \) - \( \tan \alpha' = \frac{2\sqrt{2}}{1} \) 4. **Express \( x_2 \) in terms of \( \tan^{-1} \)**: \[ x_2 = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(2\sqrt{2}\right) \] 5. **Use the formula for \( \tan^{-1}(a) + \tan^{-1}(b) \)**: \[ x_2 = \tan^{-1}\left(\frac{\frac{3}{4} + 2\sqrt{2}}{1 - \frac{3}{4} \cdot 2\sqrt{2}}\right) \] ### Step 3: Compare \( x_1 \) and \( x_2 \) 1. **From the calculations**: - \( x_1 \) is expressed as a positive angle. - \( x_2 \) involves a negative term when simplified. 2. **Conclusion**: - Since \( x_1 \) is positive and \( x_2 \) can be expressed in terms of a negative angle, we conclude that \( x_1 > x_2 \). ### Final Result Thus, we find that: \[ x_1 > x_2 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

sin^(-1){cos(sin^(-1)(sqrt(3)/2))}

For the principal values, evaluate each of the following : (i) sin^(-1)(-1/2)+2cos^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(-(sqrt(3))/2)+cos^(-1)((sqrt(3))/2)

If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) , then which is greater ?

If x=2cos^(-1)(1/2)+sin^(-1)(1/(sqrt(2)))+tan^(-1)(sqrt(3))\ a n d\ y=cos(1/2sin^(-1)(sin(x/2))) then which of the following statement holds good? a. y=cos((3pi)/16) b. y=cos((5pi)/16) c. x=4cos^(-1)y d. none of these

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then

cos(sin^-1 (3/5)+ cot^-1(3/2)) = 6/(5sqrt13)

Evaluate each of the following: cot^(-1)(1/(sqrt(3)))-cos e c^(-1)(-2)+sec^(-1)(2/(sqrt(3))) cot^(-1){2"cos"(sin^(-1)((sqrt(3))/2))}+ cos e c^(-1)(-2/(sqrt(3)))+2cot^(-1)(-1) tan^(-1)(1/(sqrt(3)))+cot^(-1)(1/(sqrt(3)))+tan^(-1)(sin(-pi/2))

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

sin^(-1)(x^2/4+y^2/9)+cos^(-1)(x/(2sqrt2)+y/(3sqrt2)-2)

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  2. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  5. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  6. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  7. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  8. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  9. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  10. If cos^(-1)""x/a+cos^(-1)""y/b=theta, Prove that x^(2)/a^(2)-(2xy)/(ab...

    Text Solution

    |

  11. tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

    Text Solution

    |

  12. cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

    Text Solution

    |

  13. If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

    Text Solution

    |

  14. The value of cos^(-1)(-1)+sin^(-1)(1) is

    Text Solution

    |

  15. If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

    Text Solution

    |

  16. The domain of the function f(x)=cos^(-1)((2-absx)/4) is

    Text Solution

    |

  17. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  18. tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0, then x is

    Text Solution

    |

  20. sin^(-1)(sinx)=x if

    Text Solution

    |