Home
Class 12
MATHS
If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)...

If `tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2)` then x is

A

`-sqrt5/3`

B

`3/sqrt10`

C

`sqrt5/3`

D

Both (1) & (3)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\sin^{-1}(\sqrt{1-x^2})) = \sin(\tan^{-1}(2)) \), we will follow these steps: ### Step 1: Define the variables Let \( \theta = \sin^{-1}(\sqrt{1-x^2}) \). This implies that \( \sin(\theta) = \sqrt{1-x^2} \). **Hint:** Use the definition of the sine function to relate it to a right triangle. ### Step 2: Construct a right triangle In a right triangle, if \( \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \), we can set: - Opposite side = \( \sqrt{1-x^2} \) - Hypotenuse = 1 Now, we need to find the base of the triangle using the Pythagorean theorem: \[ \text{Base} = \sqrt{1^2 - (\sqrt{1-x^2})^2} = \sqrt{1 - (1-x^2)} = \sqrt{x^2} = x. \] **Hint:** Remember the Pythagorean theorem: \( a^2 + b^2 = c^2 \). ### Step 3: Find \( \tan(\theta) \) Now we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{1-x^2}}{x}. \] **Hint:** Recall the definition of tangent in terms of sine and cosine. ### Step 4: Define the second variable Let \( \alpha = \tan^{-1}(2) \). This means that \( \tan(\alpha) = 2 \). **Hint:** Use the definition of tangent to set up a triangle for \( \alpha \). ### Step 5: Construct a right triangle for \( \alpha \) In a right triangle: - Opposite side = 2 - Adjacent side = 1 Now, we can find the hypotenuse: \[ \text{Hypotenuse} = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}. \] **Hint:** Again, apply the Pythagorean theorem. ### Step 6: Find \( \sin(\alpha) \) Now, we find \( \sin(\alpha) \): \[ \sin(\alpha) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{2}{\sqrt{5}}. \] **Hint:** Use the sine definition based on the triangle you just constructed. ### Step 7: Set up the equation Now, we have: \[ \tan(\theta) = \sin(\alpha). \] Substituting the values we found: \[ \frac{\sqrt{1-x^2}}{x} = \frac{2}{\sqrt{5}}. \] **Hint:** This equation relates the two expressions we derived. ### Step 8: Cross-multiply Cross-multiplying gives: \[ \sqrt{5} \cdot \sqrt{1-x^2} = 2x. \] **Hint:** Be careful with the algebra when cross-multiplying. ### Step 9: Square both sides Squaring both sides results in: \[ 5(1-x^2) = 4x^2. \] **Hint:** Distributing the 5 will help simplify the equation. ### Step 10: Rearrange the equation Rearranging gives: \[ 5 - 5x^2 = 4x^2 \implies 5 = 9x^2 \implies x^2 = \frac{5}{9}. \] **Hint:** Isolate \( x^2 \) to solve for \( x \). ### Step 11: Solve for \( x \) Taking the square root gives: \[ x = \pm \frac{\sqrt{5}}{3}. \] **Hint:** Remember to consider both the positive and negative roots. ### Final Answer Thus, the values of \( x \) are: \[ x = \frac{\sqrt{5}}{3} \quad \text{and} \quad x = -\frac{\sqrt{5}}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

sin (tan ^(-1)2x)

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is

The value of x where xgt0 and tan(sec^(-1)(1/x))=sin(tan^(-1)2) is

The set of values of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x holds is

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

Find tan^(-1)x/(sqrt(a^2-x^2)) in terms of sin^(-1) where x in (0, a)dot

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  2. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  5. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  6. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  7. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  8. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  9. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  10. If cos^(-1)""x/a+cos^(-1)""y/b=theta, Prove that x^(2)/a^(2)-(2xy)/(ab...

    Text Solution

    |

  11. tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

    Text Solution

    |

  12. cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

    Text Solution

    |

  13. If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

    Text Solution

    |

  14. The value of cos^(-1)(-1)+sin^(-1)(1) is

    Text Solution

    |

  15. If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

    Text Solution

    |

  16. The domain of the function f(x)=cos^(-1)((2-absx)/4) is

    Text Solution

    |

  17. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  18. tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0, then x is

    Text Solution

    |

  20. sin^(-1)(sinx)=x if

    Text Solution

    |