Home
Class 12
MATHS
If 0 le x le 1 then cos^(-1)(2x^(2)-1) e...

If `0 le x le 1 then cos^(-1)(2x^(2)-1)` equals

A

`2cos^(-1)x`

B

`2sin^(-1)x`

C

`pi-2cos^(-1)x`

D

`pi+2cos^(-1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos^{-1}(2x^2 - 1) \) for \( 0 \leq x \leq 1 \), we can follow these steps: ### Step 1: Recognize the identity We start with the expression \( 2x^2 - 1 \). We can relate this to the cosine double angle identity: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] This means that if we let \( x = \cos(\theta) \), then: \[ 2x^2 - 1 = \cos(2\theta) \] ### Step 2: Substitute \( x \) in terms of \( \theta \) From the substitution \( x = \cos(\theta) \), we can express \( 2x^2 - 1 \) as: \[ 2x^2 - 1 = \cos(2\theta) \] ### Step 3: Apply the inverse cosine function Now, we apply the inverse cosine function: \[ \cos^{-1}(2x^2 - 1) = \cos^{-1}(\cos(2\theta)) \] ### Step 4: Simplify the expression Since \( \cos^{-1}(\cos(2\theta)) \) will yield \( 2\theta \) when \( 2\theta \) is in the range of \( [0, \pi] \), we have: \[ \cos^{-1}(2x^2 - 1) = 2\theta \] ### Step 5: Substitute back for \( \theta \) Recall that \( \theta = \cos^{-1}(x) \), so we substitute back: \[ 2\theta = 2\cos^{-1}(x) \] ### Final Result Thus, we conclude that: \[ \cos^{-1}(2x^2 - 1) = 2\cos^{-1}(x) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

If 1/2 le x le 1 then cos^(-1)(4x^(3)-3x) equals

if -1 le x le -1/2 then cos^(-1)(4x^(3)-3x) equals

if -1/2 le x le 1/2 then cos^(-1)(4x^(3)-3x) equals

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

If 1/2 le x le 1 then sin^(-1)3x-4x^(3) equals

If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

If -1 le x le -1/2 , then sin^(-1)(3x-4x^3) equals

If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2))) equals

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  2. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  5. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  6. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  7. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  8. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  9. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  10. If cos^(-1)""x/a+cos^(-1)""y/b=theta, Prove that x^(2)/a^(2)-(2xy)/(ab...

    Text Solution

    |

  11. tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

    Text Solution

    |

  12. cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

    Text Solution

    |

  13. If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

    Text Solution

    |

  14. The value of cos^(-1)(-1)+sin^(-1)(1) is

    Text Solution

    |

  15. If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

    Text Solution

    |

  16. The domain of the function f(x)=cos^(-1)((2-absx)/4) is

    Text Solution

    |

  17. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  18. tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0, then x is

    Text Solution

    |

  20. sin^(-1)(sinx)=x if

    Text Solution

    |