Home
Class 12
MATHS
tan^(-1)(1/2)+tan^(-1)(1/3) is equal to...

`tan^(-1)(1/2)+tan^(-1)(1/3)` is equal to

A

`pi/6`

B

`pi/4`

C

`pi/3`

D

`(5pi)/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) \), we can use the identity for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided that \( ab < 1 \). ### Step-by-step Solution: **Step 1: Identify \( a \) and \( b \)** Let \( a = \frac{1}{2} \) and \( b = \frac{1}{3} \). **Step 2: Calculate \( a + b \)** \[ a + b = \frac{1}{2} + \frac{1}{3} \] To add these fractions, we need a common denominator: \[ \frac{1}{2} = \frac{3}{6}, \quad \frac{1}{3} = \frac{2}{6} \] Thus, \[ a + b = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] **Step 3: Calculate \( ab \)** \[ ab = \left(\frac{1}{2}\right) \left(\frac{1}{3}\right) = \frac{1}{6} \] **Step 4: Check the condition \( ab < 1 \)** Since \( \frac{1}{6} < 1 \), we can use the identity. **Step 5: Substitute into the identity** Now we can substitute \( a + b \) and \( ab \) into the identity: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{1 - \frac{1}{6}}\right) \] **Step 6: Simplify the denominator** Calculate \( 1 - ab \): \[ 1 - ab = 1 - \frac{1}{6} = \frac{5}{6} \] **Step 7: Substitute back into the equation** Now, substituting back: \[ \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) \] **Step 8: Find the value of \( \tan^{-1}(1) \)** We know that: \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Answer: Thus, the value of \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) \) is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

1/2tan^(- 1)(12/5) is equal to

2 tan^(-1) (-2) is equal to

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)1/x=tan^(-1)1/3, then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

tan^(-1)(1/(11))+tan^(-1)(2/(11)) is equal to (a) 0 (b) 1//2 (c) -1 (d) none of these

Evaluate tan^(-1).(1)/(2)+ tan^(-1).(1)/(3) .

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  2. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  5. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  6. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  7. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  8. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  9. y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e ...

    Text Solution

    |

  10. If cos^(-1)""x/a+cos^(-1)""y/b=theta, Prove that x^(2)/a^(2)-(2xy)/(ab...

    Text Solution

    |

  11. tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

    Text Solution

    |

  12. cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

    Text Solution

    |

  13. If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

    Text Solution

    |

  14. The value of cos^(-1)(-1)+sin^(-1)(1) is

    Text Solution

    |

  15. If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

    Text Solution

    |

  16. The domain of the function f(x)=cos^(-1)((2-absx)/4) is

    Text Solution

    |

  17. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  18. tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0, then x is

    Text Solution

    |

  20. sin^(-1)(sinx)=x if

    Text Solution

    |