Home
Class 12
MATHS
The value of cos^(-1)(-1)+sin^(-1)(1) is...

The value of `cos^(-1)(-1)+sin^(-1)(1)` is

A

`-(3pi)/2`

B

`pi/2`

C

`pi`

D

`(3pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \cos^{-1}(-1) + \sin^{-1}(1) \), we can break it down into steps: ### Step 1: Evaluate \( \cos^{-1}(-1) \) The cosine inverse function, \( \cos^{-1}(x) \), gives the angle whose cosine is \( x \). The principal value of \( \cos^{-1}(x) \) lies in the interval \( [0, \pi] \). - We know that \( \cos(\pi) = -1 \). - Therefore, \( \cos^{-1}(-1) = \pi \). ### Step 2: Evaluate \( \sin^{-1}(1) \) The sine inverse function, \( \sin^{-1}(x) \), gives the angle whose sine is \( x \). The principal value of \( \sin^{-1}(x) \) lies in the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). - We know that \( \sin\left(\frac{\pi}{2}\right) = 1 \). - Therefore, \( \sin^{-1}(1) = \frac{\pi}{2} \). ### Step 3: Combine the results Now we can add the results from Step 1 and Step 2: \[ \cos^{-1}(-1) + \sin^{-1}(1) = \pi + \frac{\pi}{2} \] ### Step 4: Simplify the expression To simplify \( \pi + \frac{\pi}{2} \): - Convert \( \pi \) to a fraction with the same denominator: \[ \pi = \frac{2\pi}{2} \] - Now add: \[ \frac{2\pi}{2} + \frac{\pi}{2} = \frac{2\pi + \pi}{2} = \frac{3\pi}{2} \] ### Final Answer Thus, the value of \( \cos^{-1}(-1) + \sin^{-1}(1) \) is: \[ \frac{3\pi}{2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

Write the value of cos^(-1)(-1/2)+2sin^(-1)(1/2)

Knowledge Check

  • Find the principal value of cos^(-1)(-(1)/(2))+2sin^(-1)(-(1)/(2))

    A
    `(pi)/(2)`
    B
    `(2pi)/(3)`
    C
    `(3pi)/(4)`
    D
    `(5pi)/(8)`
  • Similar Questions

    Explore conceptually related problems

    Write the value of cos^(-1)(1/2)+2\ sin^(-1)(1/2)

    Find the value of: cos^(-1)(1/2)+2sin^(-1)(1/2)

    If x=(1)/(5) , the value of cos(cos^(-1)x+2sin^(-1)x) is :

    Write the principal value of cos^(-1)(1/2)-2sin^(-1)(-1/2)

    The value of sin^(-1)(sin12)+sin^(-1)(cos12)=

    The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

    Write the value of sin^(-1)(1/3)-cos^(-1)(-1/3) .