Home
Class 12
MATHS
let f(x)=e^(cos^(-1)sin(x + pi/3)) then ...

let `f(x)=e^(cos^(-1)sin(x + pi/3))` then `f((8pi)/9) and f((-7pi)/4)`

A

`f((8pi)/9)=e^((5pi)/18)`

B

`f((8pi)/9)=e^((13pi)/18)`

C

`f(-(7pi)/4)=e^((pi)/12)`

D

`f(-(7pi)/9)=e^((11pi)/12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = e^{\cos^{-1}(\sin(x + \frac{\pi}{3}))} \) for the values \( x = \frac{8\pi}{9} \) and \( x = -\frac{7\pi}{4} \). ### Step 1: Calculate \( f\left(\frac{8\pi}{9}\right) \) 1. Substitute \( x = \frac{8\pi}{9} \) into the function: \[ f\left(\frac{8\pi}{9}\right) = e^{\cos^{-1}(\sin\left(\frac{8\pi}{9} + \frac{\pi}{3}\right))} \] 2. Calculate \( \frac{8\pi}{9} + \frac{\pi}{3} \): \[ \frac{\pi}{3} = \frac{3\pi}{9} \quad \Rightarrow \quad \frac{8\pi}{9} + \frac{3\pi}{9} = \frac{11\pi}{9} \] 3. Now, find \( \sin\left(\frac{11\pi}{9}\right) \): \[ \sin\left(\frac{11\pi}{9}\right) = \sin\left(\pi + \frac{2\pi}{9}\right) = -\sin\left(\frac{2\pi}{9}\right) \] 4. Substitute back into the function: \[ f\left(\frac{8\pi}{9}\right) = e^{\cos^{-1}(-\sin\left(\frac{2\pi}{9}\right))} \] 5. Use the identity \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \): \[ f\left(\frac{8\pi}{9}\right) = e^{\pi - \cos^{-1}(\sin\left(\frac{2\pi}{9}\right))} \] 6. Now, since \( \sin\left(\frac{2\pi}{9}\right) = \cos\left(\frac{\pi}{2} - \frac{2\pi}{9}\right) \): \[ \cos^{-1}(\sin\left(\frac{2\pi}{9}\right)) = \frac{\pi}{2} - \frac{2\pi}{9} = \frac{9\pi}{18} - \frac{4\pi}{18} = \frac{5\pi}{18} \] 7. Thus, we have: \[ f\left(\frac{8\pi}{9}\right) = e^{\pi - \frac{5\pi}{18}} = e^{\frac{18\pi}{18} - \frac{5\pi}{18}} = e^{\frac{13\pi}{18}} \] ### Step 2: Calculate \( f\left(-\frac{7\pi}{4}\right) \) 1. Substitute \( x = -\frac{7\pi}{4} \) into the function: \[ f\left(-\frac{7\pi}{4}\right) = e^{\cos^{-1}(\sin\left(-\frac{7\pi}{4} + \frac{\pi}{3}\right))} \] 2. Calculate \( -\frac{7\pi}{4} + \frac{\pi}{3} \): \[ \frac{\pi}{3} = \frac{4\pi}{12} \quad \text{and} \quad -\frac{7\pi}{4} = -\frac{21\pi}{12} \] \[ -\frac{21\pi}{12} + \frac{4\pi}{12} = -\frac{17\pi}{12} \] 3. Now, find \( \sin\left(-\frac{17\pi}{12}\right) \): \[ \sin\left(-\frac{17\pi}{12}\right) = -\sin\left(\frac{17\pi}{12}\right) \] 4. Substitute back into the function: \[ f\left(-\frac{7\pi}{4}\right) = e^{\cos^{-1}(-\sin\left(\frac{17\pi}{12}\right))} \] 5. Use the identity \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \): \[ f\left(-\frac{7\pi}{4}\right) = e^{\pi - \cos^{-1}(\sin\left(\frac{17\pi}{12}\right))} \] 6. Since \( \sin\left(\frac{17\pi}{12}\right) = \cos\left(\frac{\pi}{2} - \frac{17\pi}{12}\right) \): \[ \cos^{-1}(\sin\left(\frac{17\pi}{12}\right)) = \frac{\pi}{2} - \frac{17\pi}{12} = \frac{6\pi}{12} - \frac{17\pi}{12} = -\frac{11\pi}{12} \] 7. Thus, we have: \[ f\left(-\frac{7\pi}{4}\right) = e^{\pi - \left(-\frac{11\pi}{12}\right)} = e^{\pi + \frac{11\pi}{12}} = e^{\frac{12\pi}{12} + \frac{11\pi}{12}} = e^{\frac{23\pi}{12}} \] ### Final Results: - \( f\left(\frac{8\pi}{9}\right) = e^{\frac{13\pi}{18}} \) - \( f\left(-\frac{7\pi}{4}\right) = e^{\frac{23\pi}{12}} \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - E)(ASSERTION-REASON TYPE QUESTIONS)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=e^(cos^(-1){sin(x+pi/3)}) Then, f((8pi)/9)= (a) e^(5pi//18) (b) e^(13pi//18) (c) e^(-2pi//18) (d) none of these

Let f(x)=e^cos^((-1)){sin(x+pi/3)}dot Then, f((8pi)/9)= e^(5pi//18) (b) e^(13pi//18) (c) e^(-2pi//18) (d) none of these

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

If f(x)=cos^-1(sinx(4cos^2x-1)), then 1/pif'(pi/3).f(pi/10) is

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

Let f(x)=tan^(-1)(1/2 tan2x)+tan^(-1)(cotx)+tan^(-1)(cot^3x) then (1) f((3 pi)/8)=pi (2) f(pi/8)=0 (3) f(pi/8) =pi (4) f((3pi)/8)=0

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is