Home
Class 12
MATHS
Value of x satisfying tan(sec^(- 1)x)=...

Value of x satisfying ` tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))`

A

`x=-3/sqrt5`

B

`x=sqrt5/2`

C

`x=3/sqrt5`

D

`x=-sqrt5/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\sec^{-1} x) = \sin(\cos^{-1}(\frac{1}{\sqrt{5}})) \), we will follow these steps: ### Step 1: Understand the left side of the equation Let \( \theta = \sec^{-1} x \). By the definition of secant, we have: \[ \sec \theta = x \implies \cos \theta = \frac{1}{x} \] ### Step 2: Find the value of \( \tan \theta \) Using the Pythagorean identity, we can find the opposite side of the triangle. In a right triangle where the adjacent side is \( 1 \) (base) and the hypotenuse is \( x \): \[ \text{Opposite side} = \sqrt{x^2 - 1} \] Thus, we can express \( \tan \theta \) as: \[ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{\sqrt{x^2 - 1}}{1} = \sqrt{x^2 - 1} \] ### Step 3: Understand the right side of the equation Now, we need to evaluate \( \sin(\cos^{-1}(\frac{1}{\sqrt{5}})) \). Let \( \phi = \cos^{-1}(\frac{1}{\sqrt{5}}) \). By the definition of cosine: \[ \cos \phi = \frac{1}{\sqrt{5}} \implies \text{Adjacent} = 1 \quad \text{and} \quad \text{Hypotenuse} = \sqrt{5} \] Using the Pythagorean theorem, we find the opposite side: \[ \text{Opposite} = \sqrt{(\sqrt{5})^2 - 1^2} = \sqrt{5 - 1} = \sqrt{4} = 2 \] Thus, we can express \( \sin \phi \) as: \[ \sin \phi = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{2}{\sqrt{5}} \] ### Step 4: Set the two sides equal Now we have: \[ \sqrt{x^2 - 1} = \frac{2}{\sqrt{5}} \] ### Step 5: Square both sides to eliminate the square root Squaring both sides gives: \[ x^2 - 1 = \left(\frac{2}{\sqrt{5}}\right)^2 \] \[ x^2 - 1 = \frac{4}{5} \] ### Step 6: Solve for \( x^2 \) Adding \( 1 \) to both sides: \[ x^2 = 1 + \frac{4}{5} = \frac{5}{5} + \frac{4}{5} = \frac{9}{5} \] ### Step 7: Solve for \( x \) Taking the square root of both sides: \[ x = \pm \sqrt{\frac{9}{5}} = \pm \frac{3}{\sqrt{5}} \] ### Final Answer Thus, the values of \( x \) satisfying the equation are: \[ x = \frac{3}{\sqrt{5}} \quad \text{and} \quad x = -\frac{3}{\sqrt{5}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - E)(ASSERTION-REASON TYPE QUESTIONS)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

tan(sec^(-1) (1/x))=sin(cos^(-1) (1/sqrt(5)))

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5) may be

The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-cos^(- 1)((sqrt(10))/10)

If the value of x satisfying the equation sin^(-1)sqrt(1-x^2)=tan^(-1)sqrt(2/x-1) is a/b (where a&b are coprime), then the value of a^2+b^2 is a. 7 b. 5 c. 3 d. 1

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15))/(|x|))=cos^(-1)((14)/(|x|)) is

The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|, is