Home
Class 12
MATHS
If the maximum possible value of (sin^(-...

If the maximum possible value of `(sin^(- 1)x)^2+(tan^(- 1)y)^2+pisin^(- 1)x+pitan^(- 1)y+(pi^2)/2` is k, and [] represents the greatest integer function then the value of `[k/(2pi^2)]` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum possible value of the expression: \[ f(x, y) = (\sin^{-1} x)^2 + (\tan^{-1} y)^2 + \pi \sin^{-1} x + \pi \tan^{-1} y + \frac{\pi^2}{2} \] ### Step 1: Understanding the Ranges First, we need to determine the ranges of \(\sin^{-1} x\) and \(\tan^{-1} y\): - The range of \(\sin^{-1} x\) is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). - The range of \(\tan^{-1} y\) is also \([- \frac{\pi}{2}, \frac{\pi}{2}]\). ### Step 2: Rewrite the Function We can rewrite the function \(f\) as follows: \[ f(x, y) = \left(\sin^{-1} x\right)^2 + \pi \sin^{-1} x + \left(\tan^{-1} y\right)^2 + \pi \tan^{-1} y + \frac{\pi^2}{2} \] ### Step 3: Maximizing Each Component To maximize \(f\), we need to maximize the two components separately: 1. Let \(u = \sin^{-1} x\) and \(v = \tan^{-1} y\). Then we need to maximize: \[ g(u) = u^2 + \pi u \quad \text{for } u \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] 2. Similarly, we need to maximize: \[ h(v) = v^2 + \pi v \quad \text{for } v \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] ### Step 4: Finding the Maximum of \(g(u)\) To find the maximum of \(g(u)\), we can differentiate: \[ g'(u) = 2u + \pi \] Setting \(g'(u) = 0\): \[ 2u + \pi = 0 \implies u = -\frac{\pi}{2} \] Now we check the endpoints: - At \(u = -\frac{\pi}{2}\): \[ g\left(-\frac{\pi}{2}\right) = \left(-\frac{\pi}{2}\right)^2 + \pi \left(-\frac{\pi}{2}\right) = \frac{\pi^2}{4} - \frac{\pi^2}{2} = -\frac{\pi^2}{4} \] - At \(u = \frac{\pi}{2}\): \[ g\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)^2 + \pi \left(\frac{\pi}{2}\right) = \frac{\pi^2}{4} + \frac{\pi^2}{2} = \frac{3\pi^2}{4} \] Thus, the maximum value of \(g(u)\) is \(\frac{3\pi^2}{4}\). ### Step 5: Finding the Maximum of \(h(v)\) Using the same method for \(h(v)\): \[ h'(v) = 2v + \pi \] Setting \(h'(v) = 0\): \[ 2v + \pi = 0 \implies v = -\frac{\pi}{2} \] Checking the endpoints: - At \(v = -\frac{\pi}{2}\): \[ h\left(-\frac{\pi}{2}\right) = -\frac{\pi^2}{4} \] - At \(v = \frac{\pi}{2}\): \[ h\left(\frac{\pi}{2}\right) = \frac{3\pi^2}{4} \] Thus, the maximum value of \(h(v)\) is also \(\frac{3\pi^2}{4}\). ### Step 6: Combine the Maximum Values Now, we combine the maximum values of \(g(u)\) and \(h(v)\): \[ f_{\text{max}} = g(u) + h(v) + \frac{\pi^2}{2} = \frac{3\pi^2}{4} + \frac{3\pi^2}{4} + \frac{\pi^2}{2} \] Calculating this: \[ f_{\text{max}} = \frac{3\pi^2}{4} + \frac{3\pi^2}{4} + \frac{2\pi^2}{4} = \frac{8\pi^2}{4} = 2\pi^2 \] ### Step 7: Determine \(k\) and the Greatest Integer Function Thus, the maximum value \(k\) is \(2\pi^2\). We need to find: \[ \left\lfloor \frac{k}{2\pi^2} \right\rfloor = \left\lfloor \frac{2\pi^2}{2\pi^2} \right\rfloor = \left\lfloor 1 \right\rfloor = 1 \] ### Final Answer The value of \(\left\lfloor \frac{k}{2\pi^2} \right\rfloor\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - E)(ASSERTION-REASON TYPE QUESTIONS)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - F)(MATRIX-MATCH TYPE QUESTION)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If [sin^(-1)x]^(2)+[sin^(-1)x]-2 le 0 (where, [.] represents the greatest integral part of x), then the maximum value of x is

if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greatest integer function), then

Find the value of int_(-2)^(2)(sin^(-1)(sinx)+cos^(-1)(cosx))/((1+x^(2))(1+[(x^(2))/5]))dx , where [.] represents the greatest integer function.

Draw the graph of y = [sin x], x in [0, 2pi], where [*] represents the greatest integer function.

The integral I=int_(0)^(100pi)[tan^(-1)x]dx (where, [.] represents the greatest integer function) has the vlaue K(pi)+ tan(p) then value of K + p is equal to

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)