Home
Class 12
MATHS
If the maximum value of (sec^-1 x)^2 + (...

If the maximum value of `(sec^-1 x)^2 + (cosec^-1 x)^2` approaches a, the minimum value of `(tan^-1 x)^3 +(cot^-1 x)^3` approaches b then `(a+b/pi)` is equal to

A

`pi^2`

B

`(41pi^2)/32`

C

`pi^2/32`

D

`(43pi^2)/32`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \((\sec^{-1} x)^2 + (\csc^{-1} x)^2\) and the minimum value of \((\tan^{-1} x)^3 + (\cot^{-1} x)^3\), and then compute \(a + \frac{b}{\pi}\). ### Step 1: Finding the maximum value of \((\sec^{-1} x)^2 + (\csc^{-1} x)^2\) Let: \[ y = (\sec^{-1} x)^2 + (\csc^{-1} x)^2 \] Using the identity: \[ \sec^{-1} x + \csc^{-1} x = \frac{\pi}{2} \] we can express \(\csc^{-1} x\) in terms of \(\sec^{-1} x\): \[ \csc^{-1} x = \frac{\pi}{2} - \sec^{-1} x \] Substituting this into \(y\): \[ y = (\sec^{-1} x)^2 + \left(\frac{\pi}{2} - \sec^{-1} x\right)^2 \] Let \(t = \sec^{-1} x\): \[ y = t^2 + \left(\frac{\pi}{2} - t\right)^2 \] Expanding the square: \[ y = t^2 + \left(\frac{\pi^2}{4} - \pi t + t^2\right) = 2t^2 - \pi t + \frac{\pi^2}{4} \] ### Step 2: Finding the critical points To find the maximum, we differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = 4t - \pi \] Setting the derivative to zero: \[ 4t - \pi = 0 \implies t = \frac{\pi}{4} \] ### Step 3: Evaluating \(y\) at the critical point Substituting \(t = \frac{\pi}{4}\): \[ y = 2\left(\frac{\pi}{4}\right)^2 - \pi\left(\frac{\pi}{4}\right) + \frac{\pi^2}{4} \] Calculating: \[ y = 2 \cdot \frac{\pi^2}{16} - \frac{\pi^2}{4} + \frac{\pi^2}{4} = \frac{\pi^2}{8} \] Thus, the maximum value \(a\) is: \[ a = \frac{\pi^2}{8} \] ### Step 4: Finding the minimum value of \((\tan^{-1} x)^3 + (\cot^{-1} x)^3\) Let: \[ z = (\tan^{-1} x)^3 + (\cot^{-1} x)^3 \] Using the identity: \[ \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \] We can express \(\cot^{-1} x\) in terms of \(\tan^{-1} x\): \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] Substituting this into \(z\): \[ z = (\tan^{-1} x)^3 + \left(\frac{\pi}{2} - \tan^{-1} x\right)^3 \] Let \(u = \tan^{-1} x\): \[ z = u^3 + \left(\frac{\pi}{2} - u\right)^3 \] ### Step 5: Expanding and simplifying Expanding the cube: \[ z = u^3 + \left(\frac{\pi^3}{8} - \frac{3\pi^2}{4}u + 3\frac{\pi}{2}u^2 - u^3\right) \] This simplifies to: \[ z = \frac{\pi^3}{8} - \frac{3\pi^2}{4}u + \frac{3\pi}{2}u^2 \] ### Step 6: Finding the critical points Differentiating \(z\) with respect to \(u\): \[ \frac{dz}{du} = -\frac{3\pi^2}{4} + 3\pi u \] Setting the derivative to zero: \[ -\frac{3\pi^2}{4} + 3\pi u = 0 \implies u = \frac{\pi}{4} \] ### Step 7: Evaluating \(z\) at the critical point Substituting \(u = \frac{\pi}{4}\): \[ z = \left(\frac{\pi}{4}\right)^3 + \left(\frac{\pi}{2} - \frac{\pi}{4}\right)^3 = \frac{\pi^3}{64} + \left(\frac{\pi}{4}\right)^3 = 2 \cdot \frac{\pi^3}{64} = \frac{\pi^3}{32} \] Thus, the minimum value \(b\) is: \[ b = \frac{\pi^3}{32} \] ### Step 8: Calculating \(a + \frac{b}{\pi}\) Now we substitute \(a\) and \(b\): \[ a + \frac{b}{\pi} = \frac{\pi^2}{8} + \frac{\frac{\pi^3}{32}}{\pi} = \frac{\pi^2}{8} + \frac{\pi^2}{32} \] Finding a common denominator (32): \[ = \frac{4\pi^2}{32} + \frac{\pi^2}{32} = \frac{5\pi^2}{32} \] ### Final Answer Thus, the final result is: \[ \frac{5\pi^2}{32} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - E)(ASSERTION-REASON TYPE QUESTIONS)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - F)(MATRIX-MATCH TYPE QUESTION)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of (sec^(-1) x)^(2) + (cosec^(-1) x)^(2)

Find the maximum value of (sec^(-1) x) (cosec^(-1) x), x ge 1

Find the minimum value of f(x)= pi^2/(16 cot^-1 (-x)) - cot^-1 x

If A=e^(cos(cos^(-1)(x^(2))+tan (cot^(-1)(x^(2)) then find the minimum value of A

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is

If sec 1.4=x, find the value of csc (2tan^(-1)x) .

Write the value of cos((tan^(-1)x+cot^(-1)x)/3) , when x=-1/(sqrt(3)) .

If A = x^2+1/x^2 , B = x-1/x then minimum value of A/B is