Home
Class 12
MATHS
(cos^(- 1)x+sec^(- 1)x+tan^(- 1)x+cot^(-...

`(cos^(- 1)x+sec^(- 1)x+tan^(- 1)x+cot^(- 1)x)_(max)+6((sin^(- 1)x)^2+pi sin^-1 x)_(min)` equals

A

(a)`(5pi^2+3pi)/2`

B

(b)`(pi^2+3pi)/2`

C

(c)`(5pi-3pi^2)/2`

D

(d)`(pi+3pi^3)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\cos^{-1}x + \sec^{-1}x + \tan^{-1}x + \cot^{-1}x)_{\text{max}} + 6((\sin^{-1}x)^2 + \pi \sin^{-1}x)_{\text{min}} \] ### Step 1: Evaluate \((\cos^{-1}x + \sec^{-1}x + \tan^{-1}x + \cot^{-1}x)_{\text{max}}\) Let \( t = \cos^{-1}x + \sec^{-1}x + \tan^{-1}x + \cot^{-1}x \). Using the identity \(\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}\), we can rewrite \( t \): \[ t = \cos^{-1}x + \sec^{-1}x + \frac{\pi}{2} \] ### Step 2: Determine the domain for \( t \) The domain for \(\cos^{-1}x\) is \(x \in [-1, 1]\). - At \(x = -1\): \[ \cos^{-1}(-1) = \pi, \quad \sec^{-1}(-1) = \pi \] Thus, \[ t = \pi + \pi + \frac{\pi}{2} = \frac{5\pi}{2} \] - At \(x = 1\): \[ \cos^{-1}(1) = 0, \quad \sec^{-1}(1) = 0 \] Thus, \[ t = 0 + 0 + \frac{\pi}{2} = \frac{\pi}{2} \] ### Step 3: Find the maximum value of \( t \) From the evaluations: - The maximum value occurs at \(x = -1\): \[ t_{\text{max}} = \frac{5\pi}{2} \] ### Step 4: Evaluate \(6((\sin^{-1}x)^2 + \pi \sin^{-1}x)_{\text{min}}\) Let \( v = 6((\sin^{-1}x)^2 + \pi \sin^{-1}x) \). ### Step 5: Determine the domain for \( \sin^{-1}x \) The domain for \(\sin^{-1}x\) is \(x \in [-1, 1]\). Let \(y = \sin^{-1}x\), then \(y \in [-\frac{\pi}{2}, \frac{\pi}{2}]\). ### Step 6: Find the minimum of \( v = 6(y^2 + \pi y) \) To find the minimum, we differentiate \(v\) with respect to \(y\): \[ \frac{dv}{dy} = 6(2y + \pi) \] Setting the derivative to zero for critical points: \[ 2y + \pi = 0 \implies y = -\frac{\pi}{2} \] ### Step 7: Evaluate \(v\) at the critical point Substituting \(y = -\frac{\pi}{2}\): \[ v = 6\left(\left(-\frac{\pi}{2}\right)^2 + \pi\left(-\frac{\pi}{2}\right)\right) \] \[ = 6\left(\frac{\pi^2}{4} - \frac{\pi^2}{2}\right) = 6\left(\frac{\pi^2}{4} - \frac{2\pi^2}{4}\right) = 6\left(-\frac{\pi^2}{4}\right) = -\frac{3\pi^2}{2} \] ### Step 8: Combine results Now we combine the maximum and minimum values: \[ \text{Final Result} = t_{\text{max}} + v_{\text{min}} = \frac{5\pi}{2} - \frac{3\pi^2}{2} \] ### Final Answer Thus, the final answer is: \[ \frac{5\pi - 3\pi^2}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - E)(ASSERTION-REASON TYPE QUESTIONS)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - F)(MATRIX-MATCH TYPE QUESTION)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(sec^(-1)x)+(sec^(-1)x)/(cosec^(-1)x)+(cosec^(-1)x)/(cot^(-1)x)+(cot^(-1)x)/(sin^(-1)x) . Then which of the following statements holds good?

tan^(-1) ((1-cos x)/(sin x))

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),cot^(-1)(pix)):}] and B=(1)/(pi) [{:(-cos^(-1)(pix), tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),-tan^(-1)(pix)):}] then A-B is equal to

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to