Home
Class 12
MATHS
The number of divisions of 9600 , includ...

The number of divisions of 9600 , including 1 and 9600 are

A

50

B

48

C

58

D

46

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of divisors of the number 9600, we will follow these steps: ### Step 1: Prime Factorization of 9600 We start by performing the prime factorization of 9600. We can divide 9600 by 2 (the smallest prime number) repeatedly until we can no longer divide evenly by 2: - \(9600 \div 2 = 4800\) - \(4800 \div 2 = 2400\) - \(2400 \div 2 = 1200\) - \(1200 \div 2 = 600\) - \(600 \div 2 = 300\) - \(300 \div 2 = 150\) - \(150 \div 2 = 75\) Now, we can no longer divide by 2. Next, we try dividing by the next smallest prime number, which is 3: - \(75 \div 3 = 25\) Finally, we divide by 5: - \(25 \div 5 = 5\) - \(5 \div 5 = 1\) Thus, the prime factorization of 9600 is: \[ 9600 = 2^7 \times 3^1 \times 5^2 \] ### Step 2: Using the Divisor Formula To find the number of divisors of a number based on its prime factorization, we use the formula: \[ \text{If } n = p_1^{e_1} \times p_2^{e_2} \times \ldots \times p_k^{e_k}, \text{ then the number of divisors } d(n) = (e_1 + 1)(e_2 + 1) \ldots (e_k + 1) \] In our case: - For \(2^7\), \(e_1 = 7\) - For \(3^1\), \(e_2 = 1\) - For \(5^2\), \(e_3 = 2\) Now we apply the formula: \[ d(9600) = (7 + 1)(1 + 1)(2 + 1) \] ### Step 3: Calculate the Number of Divisors Now, we calculate each term: - \(7 + 1 = 8\) - \(1 + 1 = 2\) - \(2 + 1 = 3\) Now multiply these results together: \[ d(9600) = 8 \times 2 \times 3 \] Calculating this gives: \[ d(9600) = 48 \] ### Conclusion Thus, the total number of divisors of 9600, including 1 and 9600 itself, is **48**. ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section C Objective type questions (One option is correct )|17 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section D Linked Comprehension Type Questions|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section A Objective type questions (One option is correct )|51 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|3 Videos
  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Section-D:(Assertion-Reason Type Questions)|11 Videos

Similar Questions

Explore conceptually related problems

The sum of the divisors of 9600 is

Number of even divisions of 504 is

The number 24! is divisible by

Circular scale of a screw gauge moves through 4 divisions of main scale in one rotation. If the number of divisions on the circular scale is 200 and each division of the main scale is 1 mm., the least count of the screw gauge is

The least count of a veriner callipers is (1)/(100)cm . The value of one division on the main scale is 1mm. The, the number of divisions on the main scale that coincide with N divisions of the vernier is

For N=50400 the number of divisor of N , which are divisible by 6, divisible by

The number of cervial vertebrae in mammals including human beings are

Let X and Y be the sets of all positive divisions of400 and 1000 respectively (including 1 and the number). Then n(X cap Y) is T, then (T)/(4) is-

The toal number of isomers including stereoisomers for 1,3- dimethyl cyclohexane is:

The total number of isomer including stereosisomers for 1,2-dimethyl cyclobutane is:

AAKASH INSTITUTE ENGLISH-PERMUTATIONS AND COMBINATIONS -Assignment Section B Objective type questions (One option is correct )
  1. N a certain test, there are n question. In the test, 2^(n-i) students ...

    Text Solution

    |

  2. Number of ways in which a composite number N can be resolved into two ...

    Text Solution

    |

  3. The number of divisions of 9600 , including 1 and 9600 are

    Text Solution

    |

  4. Find the sum of all five digit numbers ,that can be formed using the d...

    Text Solution

    |

  5. The number of ways of selecting 8 books from a library which has 9 boo...

    Text Solution

    |

  6. Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x(1), x(2)...

    Text Solution

    |

  7. There are 12 points in a plane in which 6 are collinear. Number of dif...

    Text Solution

    |

  8. Let Tn denote the number of triangles, which can be formed using th...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. There are m points on the line AB and n points on the line AC, excludi...

    Text Solution

    |

  11. The number of rectangle , of any sixe excluding squares from the recta...

    Text Solution

    |

  12. The number of divisors of the form 4K + 2 , K ge 0 of the integers 24...

    Text Solution

    |

  13. The exponent of 12 in 100! Is

    Text Solution

    |

  14. If the maximum number of trials required to open all locks when there ...

    Text Solution

    |

  15. How many numbers greater than 1000, but not greater than 4000 can be ...

    Text Solution

    |

  16. Find the total number of ways of selecting five letters from the word ...

    Text Solution

    |

  17. Eight chairs are numbered 1 to 8. Two women and three men wish to oc...

    Text Solution

    |

  18. The number of ways of distributing 12 different objects among three pe...

    Text Solution

    |

  19. Harsha invites 13 guests to a dinner and places 8 of them at one table...

    Text Solution

    |

  20. If one quarter of all the subjects containing three elements of the in...

    Text Solution

    |