Home
Class 12
MATHS
Let Delta=|{:(3,-1,-2),(4,5,6),(2,-3,1):...

Let `Delta=|{:(3,-1,-2),(4,5,6),(2,-3,1):}|` Find minor and cofactor of elements of `Delta`.

Text Solution

AI Generated Solution

To find the minors and cofactors of the elements of the determinant \( \Delta = \begin{vmatrix} 3 & -1 & -2 \\ 4 & 5 & 6 \\ 2 & -3 & 1 \end{vmatrix} \), we will follow these steps: ### Step 1: Calculate the Minors The minor \( M_{ij} \) of an element \( a_{ij} \) in a matrix is the determinant of the submatrix formed by deleting the \( i \)-th row and \( j \)-th column. 1. **Minor \( M_{11} \)**: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Find minors and cofactors of all the elements of the determinant |[1,-2],[ 4 ,3]|

If Delta = |(5,3,8),(2,0,1),(1,2,3)| , the write the minor of the element a_(23) . a) 7 b) -7 c) 4 d)8

If Delta=|[5, 3 ,8],[ 2, 0 ,1],[ 1 ,2 ,3]| , write the minor of the element a_(23)

If Delta(x)=|{:(a,b,c),(6,4,3),(x,x^(2),x^(3)):}| then find int_(0)^(1) Delta (x) dx.

Consider the determinants Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'=|{:(2,0,-2),(-2,-1,1),(-4,1,3):}| STATEMENT-1 Delta'=Delta^2 . STATEMENT-2 : The determinant formed by the cofactors of the elements of a determinant of order 3 is equal in value to the square of the original determinant.

The mid point of the sides of a triangle are (2,3,4),(1,5,-1) and (0,4,-2) . Find the coordinates of the centroid of the triangle.

If A=[[5, 3, 8],[ 2, 0, 1], [1 ,2 ,3]] . Write the cofactor of the element a_(32) .

let U= {1,2,3,4,5,6,7,8} A = {1,2,,3,4} then find the A complement

Find the minors and cofactors of elements of the matrix A=[a_(i j)]=[[1,3,-2],[4,-5,6],[3,5,2]]

Find minors and cofactors of all the elements of determinant |{:(-1,2, 3),(-4,5,-2),(6,4, 8):}|