Home
Class 12
MATHS
A=[{:(1,2,-1),(0,1,3),(1,2,-1):}] Find t...

`A=[{:(1,2,-1),(0,1,3),(1,2,-1):}]` Find the adjoint of A.

Text Solution

AI Generated Solution

To find the adjoint of the matrix \( A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 1 & 2 & -1 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the Cofactor Matrix The cofactor \( C_{ij} \) of an element \( a_{ij} \) in a matrix is given by: \[ C_{ij} = (-1)^{i+j} M_{ij} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If A =[{:(3,-3,4),(2,-3,4),(0,-1,1):}] and B is the adjoint of A, find the value of |AB+2I| ,where l is the identity matrix of order 3.

If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] be the adjoint matrix of matrix B such that |B|=9 , then the value of lambda is equal to

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

Let A+2B={:[(3,2,-3),(1,0,4),(3,1,2)]:}and-A-B={:[(1,0,3),(-1,4,1),(3,2,1)]:} . Find A and B.

Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

If [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}] =A, then find the value of A.

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by using elementary row transformations.

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.