Home
Class 12
MATHS
A=[{:(1,3),(2,1):}] satisfy the equation...

`A=[{:(1,3),(2,1):}]` satisfy the equation `A^2-kA-5I=0`, then find k and also `A^(-1)`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \( k \) and the inverse of the matrix \( A \) given by: \[ A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \] and the equation: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If A[{:(2,3),(1,2):}] satisfy the equation A^2-kA+I=0 , then find k also A^(-1) .

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=0 and hence find A^(-1)

Show that A=[(-8, 5),( 2, 4)] satisfies the equation A^2+4A-42 I=O . Hence, find A^(-1) .

Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1) .

Show that the matrix, A=[[1, 0,-2],[-2,-1, 2],[ 3, 4, 1]] satisfies the equation, A^3-A^2-3A-I_3=O . Hence, find A^(-1) .

Show that A=[(5, 3),(-1,-2)] satisfies the equation x^2-3x-7=0 . Thus, find A^(-1)

Show that A=[(6, 5),( 7, 6)] satisfies the equation x^2-12 x+1=0 . Thus, find A^(-1)

If A=[{:(1,1),(1,1):}] satisfies A^(5)=kA , then the value of k is

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

Show that A=|[2,-3], [3 ,4]| satisfies the equation x^2-6x+17=0 . Hence, find A^(-1) .