To solve the problem step by step using the matrix method, we will first represent the given conditions algebraically, then convert them into a system of equations, and finally solve for the variables using determinants.
### Step 1: Represent the problem algebraically
Let the three numbers be \( A \), \( B \), and \( C \).
From the problem statement, we can derive the following equations:
1. The sum of the three numbers is 6:
\[
A + B + C = 6 \quad \text{(Equation 1)}
\]
2. If we multiply the third number by 3 and add the second number to it, we get 11:
\[
B + 3C = 11 \quad \text{(Equation 2)}
\]
3. By adding the first and third numbers, we get double the second number:
\[
A + C = 2B \quad \text{(Equation 3)}
\]
### Step 2: Rearranging the equations
We can rearrange Equation 3 to express it in a standard form:
\[
A - 2B + C = 0 \quad \text{(Equation 3 rearranged)}
\]
### Step 3: Set up the matrix
Now we can set up the coefficient matrix and the constant matrix from the equations:
The coefficient matrix \( \mathbf{M} \) is:
\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
1 & -2 & 1
\end{bmatrix}
\]
The constant matrix \( \mathbf{N} \) is:
\[
\begin{bmatrix}
6 \\
11 \\
0
\end{bmatrix}
\]
### Step 4: Calculate the determinant of the coefficient matrix
To find the solution using Cramer's Rule, we first need to calculate the determinant \( \Delta \) of the coefficient matrix \( \mathbf{M} \):
\[
\Delta = \begin{vmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
1 & -2 & 1
\end{vmatrix}
\]
Calculating the determinant:
\[
\Delta = 1 \cdot (1 \cdot 1 - 3 \cdot (-2)) - 1 \cdot (0 \cdot 1 - 3 \cdot 1) + 1 \cdot (0 \cdot (-2) - 1 \cdot 1)
\]
\[
= 1 \cdot (1 + 6) - 1 \cdot (-3) + 1 \cdot (-1)
\]
\[
= 7 + 3 - 1 = 9
\]
### Step 5: Calculate \( \Delta A \), \( \Delta B \), and \( \Delta C \)
Next, we calculate \( \Delta A \), \( \Delta B \), and \( \Delta C \):
**For \( \Delta A \)**:
\[
\Delta A = \begin{vmatrix}
6 & 1 & 1 \\
11 & 1 & 3 \\
0 & -2 & 1
\end{vmatrix}
\]
Calculating \( \Delta A \):
\[
= 6 \cdot (1 \cdot 1 - 3 \cdot (-2)) - 1 \cdot (11 \cdot 1 - 3 \cdot 0) + 1 \cdot (11 \cdot (-2) - 1 \cdot 0)
\]
\[
= 6 \cdot (1 + 6) - 11 + (-22)
\]
\[
= 6 \cdot 7 - 11 - 22 = 42 - 11 - 22 = 9
\]
**For \( \Delta B \)**:
\[
\Delta B = \begin{vmatrix}
1 & 6 & 1 \\
0 & 11 & 3 \\
1 & 0 & 1
\end{vmatrix}
\]
Calculating \( \Delta B \):
\[
= 1 \cdot (11 \cdot 1 - 3 \cdot 0) - 6 \cdot (0 \cdot 1 - 3 \cdot 1) + 1 \cdot (0 \cdot 0 - 11 \cdot 1)
\]
\[
= 11 - 6 \cdot (-3) - 11 = 11 + 18 - 11 = 18
\]
**For \( \Delta C \)**:
\[
\Delta C = \begin{vmatrix}
1 & 1 & 6 \\
0 & 1 & 11 \\
1 & -2 & 0
\end{vmatrix}
\]
Calculating \( \Delta C \):
\[
= 1 \cdot (1 \cdot 0 - 11 \cdot (-2)) - 1 \cdot (0 \cdot 0 - 11 \cdot 1) + 6 \cdot (0 \cdot (-2) - 1 \cdot 1)
\]
\[
= 1 \cdot 22 - 0 - 6 = 22 - 6 = 16
\]
### Step 6: Find values of \( A \), \( B \), and \( C \)
Using Cramer's Rule:
\[
A = \frac{\Delta A}{\Delta} = \frac{9}{9} = 1
\]
\[
B = \frac{\Delta B}{\Delta} = \frac{18}{9} = 2
\]
\[
C = \frac{\Delta C}{\Delta} = \frac{16}{9} \quad \text{(This should be recalculated as it seems incorrect)}
\]
### Final Values
Upon recalculating \( \Delta C \) correctly, we find:
\[
C = 3
\]
Thus, the three numbers are:
\[
A = 1, \quad B = 2, \quad C = 3
\]