Home
Class 12
MATHS
The value of the determinant |{:(1,x,x^2...

The value of the determinant `|{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}|` is equal to

A

`(x-y)(y-z)(z-x)`

B

`(x-y)(y-z)(z-x)(x+y+z)`

C

`(x+y+z)`

D

`(x-y)(y-z)(z-x)(xy+yz+zx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} \] we will follow these steps: ### Step 1: Write down the determinant We start with the determinant as given: \[ \Delta = \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} \] ### Step 2: Apply row operations We can simplify the determinant by performing row operations. We will subtract the third row from the first and second rows: \[ R_1 \rightarrow R_1 - R_3 \quad \text{and} \quad R_2 \rightarrow R_2 - R_3 \] This gives us: \[ \Delta = \begin{vmatrix} 1 - 1 & x - z & x^2 - z^2 \\ 1 - 1 & y - z & y^2 - z^2 \\ 1 & z & z^2 \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} 0 & x - z & x^2 - z^2 \\ 0 & y - z & y^2 - z^2 \\ 1 & z & z^2 \end{vmatrix} \] ### Step 3: Factor out common terms Notice that \(x^2 - z^2\) and \(y^2 - z^2\) can be factored: \[ x^2 - z^2 = (x - z)(x + z) \quad \text{and} \quad y^2 - z^2 = (y - z)(y + z) \] Thus, we can factor out \(x - z\) from the first row and \(y - z\) from the second row: \[ \Delta = (x - z)(y - z) \begin{vmatrix} 0 & 1 & x + z \\ 0 & 1 & y + z \\ 1 & z & z^2 \end{vmatrix} \] ### Step 4: Expand the determinant Now we can expand the determinant along the first column (which has zeros): \[ \Delta = (x - z)(y - z) \cdot \begin{vmatrix} 1 & x + z \\ 1 & y + z \end{vmatrix} \] Calculating this 2x2 determinant: \[ \begin{vmatrix} 1 & x + z \\ 1 & y + z \end{vmatrix} = 1(y + z) - 1(x + z) = y + z - (x + z) = y - x \] ### Step 5: Combine the results Now substituting back, we have: \[ \Delta = (x - z)(y - z)(y - x) \] ### Final Result Thus, the value of the determinant is: \[ \Delta = (x - y)(y - z)(z - x) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

If [] denotes the greatest integer less than or equal to the real number under consideration and -1lt=xlt0,0lt=ylt1,1lt=zlt2, the value of the determinant |{:([x]+1,[y],[z]),([x],[y]+1,[z]),([x],[y],[z]+1):}| is

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

Show that the area of the triangle having vertices (0,0,0),(x_1,y_1,z_1),(x_2,y_2,z_2) is 1/2 sqrt((y_1z_2-y_2z_1)^2+(z_2x_1-x_2z_1)^2+(x_1y_2-x_2y_1)^2) .

Without expanding evaluate the determinant |[(a^x+a^(-x))^2,(a^x-a^(-x))^2, 1],[(a^y+a^(-y))^2,(a^y-a^(-y))^2, 1],[(a^z+a^(-z))^2,(a^z-a^(-z))^2, 1]|, where a>0 and x , y , z in R

Prove that the value of each the following determinants is zero: |[(a^x+a^(-x))^2,(a^x-a^(-x))^2 ,1],[(b^y+b^(-y))^2,(b^y-b^(-y))^2 ,1],[(c^z+c^(-z))^2,(c^z-c^(-z))^2, 1]|

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. If A is a square matrix of order n , prove that |A\ a d j\ A|=|A|^n...

    Text Solution

    |

  2. The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is eq...

    Text Solution

    |

  3. The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is eq...

    Text Solution

    |

  4. If A is 3xx3 matrix and |A|=4, then |A^(-1)| is equal to

    Text Solution

    |

  5. If A is a square matrix of order 3 such that ||A =3, then find the val...

    Text Solution

    |

  6. If A, B and C are three sqare matrices of the same order such that A ...

    Text Solution

    |

  7. If Delta =|(a1,b1,c1),(a2,b2,c2),(a3,b3,c3)| then the value of |(2a1+3...

    Text Solution

    |

  8. If the system of equations x + 4ay + az = 0 and x + 3by + bz = 0 and x...

    Text Solution

    |

  9. Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then ...

    Text Solution

    |

  10. Let x + y + z = 6, 4x + lambday - lambdaz = 0,3x + 2y - 4z = -5. The v...

    Text Solution

    |

  11. If A+B+C=pi, then the value of |"sin"(A+B+C)sin(A+C)cosC-sinB0tanCcos...

    Text Solution

    |

  12. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  13. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  14. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  15. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  16. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  17. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  18. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  19. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  20. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |