Home
Class 12
MATHS
If Delta =|(a1,b1,c1),(a2,b2,c2),(a3,b3,...

If `Delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|` then the value of `|(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)|` is equal to

A

`Delta^2`

B

`4Delta`

C

`Delta`

D

`2Delta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the determinant: \[ \Delta = |(a_1, b_1, c_1), (a_2, b_2, c_2), (a_3, b_3, c_3)| \] We need to find the value of: \[ |(2a_1 + 3b_1 + 4c_1, b_1, c_1), (2a_2 + 3b_2 + 4c_2, b_2, c_2), (2a_3 + 3b_3 + 4c_3, b_3, c_3)| \] ### Step 1: Write the determinant We can write the determinant explicitly as follows: \[ D = |(2a_1 + 3b_1 + 4c_1, b_1, c_1), (2a_2 + 3b_2 + 4c_2, b_2, c_2), (2a_3 + 3b_3 + 4c_3, b_3, c_3)| \] ### Step 2: Split the first column We can split the first column of the determinant into three separate terms: \[ D = |(2a_1, b_1, c_1), (2a_2, b_2, c_2), (2a_3, b_3, c_3)| + |(3b_1, b_1, c_1), (3b_2, b_2, c_2), (3b_3, b_3, c_3)| + |(4c_1, b_1, c_1), (4c_2, b_2, c_2), (4c_3, b_3, c_3)| \] ### Step 3: Factor out constants Now, we can factor out the constants from each of the three determinants: \[ D = 2 |(a_1, b_1, c_1), (a_2, b_2, c_2), (a_3, b_3, c_3)| + 3 |(b_1, b_1, c_1), (b_2, b_2, c_2), (b_3, b_3, c_3)| + 4 |(c_1, b_1, c_1), (c_2, b_2, c_2), (c_3, b_3, c_3)| \] ### Step 4: Analyze the determinants 1. The first determinant simplifies to \(2 \Delta\). 2. The second determinant has two identical columns (the second column is the same as the first column), which makes it equal to 0. 3. The third determinant also has two identical columns (the first and third columns are the same), which also makes it equal to 0. Thus, we have: \[ D = 2 \Delta + 0 + 0 = 2 \Delta \] ### Conclusion Therefore, the value of the determinant is: \[ \boxed{2\Delta} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc^2,c^2+ra^2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 then the system of equations a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0 has

Let D= |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|, D_1=|(a_1+pb_1, b_1+qc_1, c1+ra_1),(a_2+pb_2, b_2+qc_2, c_2+ra_2),(a_3+pb_3, b_3+qc_3, c_3+ra_3)| , then the value of (2010D-D_1)/D_1 is

if A_(1) ,B_(1),C_(1) ……. are respectively the cofactors of the elements a_(1) ,b_(1),c_(1)…… of the determinant Delta = |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}|, Delta ne 0 then the value of |{:(B_(2),,C_(2)),(B_(3),,C_(3)):}| is equal to

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and A_2,B_2,C_2 are respectively cofactors of a_2,b_2,c_2 then a_1A_2+b_1B_2+c_1C_2 is

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

Consider the following system of equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)| , The given system of equations will have i. unique solution if /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. . 2x+ay+6z=8, x+2y+bz=5, x+y+3z=4 The given system of equatioin has unique solution if (A) a=2,b=2 (B) a!=2,b=3 (C) a!=2, b!=3 (D) a=2,b!=3

if D_1=|{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3):}| and D_2=|{:(a_1+2a_2+3a_3,2a_3,5a_2),(b_1+2b_2+3b_3,2b_3, 5b_2),(c_1+2c_2 + 3c_3 , 2c_3 , 5c_2):}| then D_2/D_1 is equal to :

Let Delta_1=|{:(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3):}| , Delta_2=|{:(6a_1,2a_2,2a_3),(3b_1,b_2,b_3),(12c_1, 4c_2,4c_3):}| and Delta_3=|{:(3a_1+b_1 , 3a_2+b_2 , 3a_3+b_3),(3b_1,3b_2,3b_3),(3c_1,3c_2,3c_3):}| then Delta_3-Delta_2=kDelta_1 , find k.

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. If A is a square matrix of order 3 such that ||A =3, then find the val...

    Text Solution

    |

  2. If A, B and C are three sqare matrices of the same order such that A ...

    Text Solution

    |

  3. If Delta =|(a1,b1,c1),(a2,b2,c2),(a3,b3,c3)| then the value of |(2a1+3...

    Text Solution

    |

  4. If the system of equations x + 4ay + az = 0 and x + 3by + bz = 0 and x...

    Text Solution

    |

  5. Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then ...

    Text Solution

    |

  6. Let x + y + z = 6, 4x + lambday - lambdaz = 0,3x + 2y - 4z = -5. The v...

    Text Solution

    |

  7. If A+B+C=pi, then the value of |"sin"(A+B+C)sin(A+C)cosC-sinB0tanCcos...

    Text Solution

    |

  8. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  9. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  10. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  11. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  12. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  13. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  14. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  15. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  16. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  17. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  18. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  19. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |