Home
Class 12
MATHS
Let x + y + z = 6, 4x + lambday - lambda...

Let `x + y + z = 6, 4x + lambday - lambdaz = 0,3x + 2y - 4z = -5.` The value of `lambda` for which given system of equations does not have a unique solution is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the given system of equations does not have a unique solution, we need to set up the equations in a matrix form and find the determinant. The system of equations is: 1. \( x + y + z = 6 \) 2. \( 4x + \lambda y - \lambda z = 0 \) 3. \( 3x + 2y - 4z = -5 \) We can express this system in the form of a matrix equation \( AX = B \), where: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & \lambda & -\lambda \\ 3 & 2 & -4 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 6 \\ 0 \\ -5 \end{bmatrix} \] To find the values of \( \lambda \) for which the system does not have a unique solution, we need to calculate the determinant of matrix \( A \) and set it equal to zero: \[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 4 & \lambda & -\lambda \\ 3 & 2 & -4 \end{vmatrix} \] Calculating the determinant using the formula for a 3x3 matrix: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} \lambda & -\lambda \\ 2 & -4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 4 & -\lambda \\ 3 & -4 \end{vmatrix} + 1 \cdot \begin{vmatrix} 4 & \lambda \\ 3 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} \lambda & -\lambda \\ 2 & -4 \end{vmatrix} = \lambda \cdot (-4) - (-\lambda) \cdot 2 = -4\lambda + 2\lambda = -2\lambda \) 2. \( \begin{vmatrix} 4 & -\lambda \\ 3 & -4 \end{vmatrix} = 4 \cdot (-4) - (-\lambda) \cdot 3 = -16 + 3\lambda = 3\lambda - 16 \) 3. \( \begin{vmatrix} 4 & \lambda \\ 3 & 2 \end{vmatrix} = 4 \cdot 2 - \lambda \cdot 3 = 8 - 3\lambda \) Putting it all together: \[ \text{det}(A) = 1 \cdot (-2\lambda) - 1 \cdot (3\lambda - 16) + 1 \cdot (8 - 3\lambda) \] Simplifying: \[ \text{det}(A) = -2\lambda - 3\lambda + 16 + 8 - 3\lambda \] \[ = -8\lambda + 24 \] Setting the determinant equal to zero for non-unique solutions: \[ -8\lambda + 24 = 0 \] Solving for \( \lambda \): \[ -8\lambda = -24 \quad \Rightarrow \quad \lambda = \frac{24}{8} = 3 \] Thus, the value of \( \lambda \) for which the given system of equations does not have a unique solution is: \[ \lambda = 3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of k for which the following system of equations has a unique solution: 4x-5y=k ,\ \ \ \ 2x-3y=12

Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4 ,then the value of lambda such that the given system of equations has no solution, is

Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4 ,then the value of lambda such that the given system of equations has no solution, is

The values of lambda for which the system of euations x+y+z=6x+2y+3z=10 x+2y+lambdaz=12 is inconsistent

Given 2x + 4y + z = 1, lambdax + 2y + z = 2, x+ y - lambdaz = 3, then one of the value of a such that the given system of equations has no solution, is

Given , 2x-y+2z=2, x-2y+z=-4, x+y+ lambda z=4, then the value of lambda such that the given system of equations has no solution is :

lambda x + 2y + 2z = 5, 2lambda x + 3y + 5z = 8, 4x + lambda y + 6z = 10 for the system of equation check the correct option.

Consider the system of equations x+2y+3z=6, 4x+5y+6z=lambda , 7x+8y+9z=24 . Then, the value of lambda for which the system has infinite solutions is

The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a unique solution if

Consider the system of equations alphax+y+z = p, x+alphay+z=q and x+y+alphaz=r , then the sum of all possible distinct value(s) of alpha for which system does not possess a unique solution is

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. If the system of equations x + 4ay + az = 0 and x + 3by + bz = 0 and x...

    Text Solution

    |

  2. Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then ...

    Text Solution

    |

  3. Let x + y + z = 6, 4x + lambday - lambdaz = 0,3x + 2y - 4z = -5. The v...

    Text Solution

    |

  4. If A+B+C=pi, then the value of |"sin"(A+B+C)sin(A+C)cosC-sinB0tanCcos...

    Text Solution

    |

  5. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  6. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  7. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  8. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  9. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  10. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  11. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  12. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  13. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  14. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  15. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  16. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  17. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  18. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  19. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  20. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |