Home
Class 12
MATHS
If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0,...

If `|{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0`, then `a+b+c` is equal to

A

41

B

116

C

628

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \begin{vmatrix} 4 & -4 & 0 \\ a & b+4 & c \\ a & b & c+4 \end{vmatrix} = 0 \] ### Step 1: Expand the Determinant We will expand the determinant along the first row (R1): \[ D = 4 \begin{vmatrix} b+4 & c \\ b & c+4 \end{vmatrix} - (-4) \begin{vmatrix} a & c \\ a & c+4 \end{vmatrix} + 0 \] ### Step 2: Calculate the 2x2 Determinants Now we calculate the two 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} b+4 & c \\ b & c+4 \end{vmatrix} = (b+4)(c+4) - bc = bc + 4b + 4c + 16 - bc = 4b + 4c + 16 \] 2. For the second determinant: \[ \begin{vmatrix} a & c \\ a & c+4 \end{vmatrix} = a(c+4) - ac = ac + 4a - ac = 4a \] ### Step 3: Substitute Back into the Determinant Now substituting these back into the expression for D: \[ D = 4(4b + 4c + 16) + 4(4a) \] ### Step 4: Simplify the Expression Now simplify the expression: \[ D = 16b + 16c + 64 + 16a \] ### Step 5: Set the Determinant to Zero Since we are given that the determinant equals zero: \[ 16a + 16b + 16c + 64 = 0 \] ### Step 6: Factor Out Common Terms We can factor out 16: \[ 16(a + b + c + 4) = 0 \] ### Step 7: Solve for \(a + b + c\) Since \(16 \neq 0\), we can divide both sides by 16: \[ a + b + c + 4 = 0 \] Thus, we have: \[ a + b + c = -4 \] ### Final Answer So, the value of \(a + b + c\) is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2),b^(4)-1),(c,c^(2),c^(4)-1):}|=0 then A) a b c = 1 B ) a b c ( a + b + c ) = 1 C ) a b c ( a + b + c ) = a b + b c + c a D) none of these

If a ,b ,c are in G.P. and a-b ,c-a ,a n db-c are in H.P., then prove that a+4b+c is equal to 0.

If a ,b ,c are in G.P. and a-b ,c-a ,a n db-c are in H.P., then prove that a+4b+c is equal to 0.

If the quadratic equation ax^(2) + 2cx + b = 0 and ax^(2) + 2x + c = 0 ( b != c ) have a common root then a + 4b + 4c is equal to

If a!=6,b,c satisfy |[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

If the quadratic equations, a x^2+2c x+b=0 and a x^2+2b x+c=0(b!=c) have a common root, then a+4b+4c is equal to: a. -2 b. 2 c. 0 d. 1

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find the values of a,b and c.

Three numbers a, b and c are in geometric progression. If 4a, 5b and 4c are in arithmetic progression and a+b+c=70 , then the value of |c-a| is equal to

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  2. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  19. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |