Home
Class 12
MATHS
|{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is ...

`|{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}|` is equal to:

A

(a) `4`

B

(b) `4+y+z`

C

(c) `xyz`

D

(d) `0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( | \begin{vmatrix} x & 4 & y+z \\ y & 4 & z+x \\ z & 4 & x+y \end{vmatrix} | \), we will follow these steps: ### Step 1: Write down the determinant We start with the determinant: \[ \Delta = \begin{vmatrix} x & 4 & y+z \\ y & 4 & z+x \\ z & 4 & x+y \end{vmatrix} \] ### Step 2: Perform column operations We will add the third column to the first column. This gives us: \[ \Delta = \begin{vmatrix} x + (y+z) & 4 & y+z \\ y + (z+x) & 4 & z+x \\ z + (x+y) & 4 & x+y \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} x+y+z & 4 & y+z \\ y+z+x & 4 & z+x \\ z+x+y & 4 & x+y \end{vmatrix} \] ### Step 3: Factor out common terms Now, we can factor out \( (x+y+z) \) from the first column and \( 4 \) from the second column: \[ \Delta = (x+y+z) \cdot 4 \cdot \begin{vmatrix} 1 & 1 & y+z \\ 1 & 1 & z+x \\ 1 & 1 & x+y \end{vmatrix} \] ### Step 4: Analyze the new determinant The new determinant is: \[ \begin{vmatrix} 1 & 1 & y+z \\ 1 & 1 & z+x \\ 1 & 1 & x+y \end{vmatrix} \] Notice that the first two columns are identical, which implies that the determinant is zero: \[ \begin{vmatrix} 1 & 1 & y+z \\ 1 & 1 & z+x \\ 1 & 1 & x+y \end{vmatrix} = 0 \] ### Step 5: Conclude the value of the original determinant Thus, we have: \[ \Delta = (x+y+z) \cdot 4 \cdot 0 = 0 \] ### Final Answer The value of the determinant is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If |(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+y,y+z)| =k |(x,z,y),(y,x,z),(z,y,x)| , then k is equal to

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)^(3)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

If x,y,z in R and |{:(x,y^2,z^3),(x^4,y^5,z^6),(x^7,y^8,z^9):}|=2 then find the value of |{:(y^5z^6(z^3-y^3),x^4z^6(x^3-z^3),x^4y^5(y^3-x^3)),(y^2z^3(y^6-z^6),xz^3(z^6-x^6), xy^2(x^6-y^6)),(y^2z^3(z^3-y^3),xz^3(x^3-z^3),xy^2(y^3-x^3)):}|

If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  2. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  19. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |