Home
Class 12
MATHS
The roots of the equation |{:(x-1,1,1),(...

The roots of the equation `|{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0` are

A

1,2

B

`-1,2`

C

`1, -2`

D

`-1, -2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the determinant \( |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 \), we will follow a step-by-step approach. ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{vmatrix} \] ### Step 2: Simplify the determinant We can simplify the determinant using row operations. Let's add the second row to the third row: \[ R_2 + R_3 \rightarrow R_3 \] This gives us: \[ D = \begin{vmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 2 & 2 & x-2 \end{vmatrix} \] ### Step 3: Expand the determinant Now, we will expand the determinant along the first row: \[ D = (x-1) \begin{vmatrix} x-1 & 1 \\ 2 & x-2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 2 & x-2 \end{vmatrix} + 1 \begin{vmatrix} 1 & x-1 \\ 2 & 2 \end{vmatrix} \] ### Step 4: Calculate the 2x2 determinants Calculating the first 2x2 determinant: \[ \begin{vmatrix} x-1 & 1 \\ 2 & x-2 \end{vmatrix} = (x-1)(x-2) - 2 = x^2 - 3x + 2 \] Calculating the second 2x2 determinant: \[ \begin{vmatrix} 1 & 1 \\ 2 & x-2 \end{vmatrix} = 1(x-2) - 2 = x - 4 \] Calculating the third 2x2 determinant: \[ \begin{vmatrix} 1 & x-1 \\ 2 & 2 \end{vmatrix} = 1 \cdot 2 - 2(x-1) = 2 - 2x + 2 = 4 - 2x \] ### Step 5: Substitute back into the determinant Substituting these values back into the determinant expression: \[ D = (x-1)(x^2 - 3x + 2) - (x - 4) + (4 - 2x) \] This simplifies to: \[ D = (x-1)(x^2 - 3x + 2) - x + 4 + 4 - 2x \] \[ D = (x-1)(x^2 - 3x + 2) - 3x + 8 \] ### Step 6: Expand and simplify Now, we expand \( (x-1)(x^2 - 3x + 2) \): \[ D = x^3 - 3x^2 + 2x - x^2 + 3x - 2 - 3x + 8 \] \[ D = x^3 - 4x^2 + 6 \] ### Step 7: Set the determinant to zero Setting the determinant equal to zero gives us: \[ x^3 - 4x^2 + 6 = 0 \] ### Step 8: Find the roots To find the roots of the cubic equation \( x^3 - 4x^2 + 6 = 0 \), we can use numerical methods or factorization. Trying possible rational roots, we find: 1. \( x = 2 \) is a root. 2. We can factor \( (x - 2) \) out to find the other roots. Using synthetic division or polynomial long division, we can find: \[ x^3 - 4x^2 + 6 = (x - 2)(x^2 - 2x - 3) \] Factoring \( x^2 - 2x - 3 \) gives: \[ (x - 3)(x + 1) \] ### Final Roots Thus, the roots of the equation are: \[ x = 2, \quad x = 3, \quad x = -1 \] ### Summary of Roots The roots of the equation \( |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 \) are \( x = 2, -1, \text{ and } 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

The roots of the equation |(1+x,1,1),(1,1+x,1),(1,1,1+x)| = 0 are

The roots of the equation det [(1-x, 2, 3),(0,2-x,0),(0,2,3-x)]=0 are (A) 1 and 2 (B) 1 and 3 (C) 2 and 3 (D) 1,2, and 3

Solve the equation: |[x,1,1],[1,x,1],[1,1,x]|=0

Find the root of the equation |x-1|^(x^(2)+x-2)=1

for the equation |{:(1,,x,,x^(2)),(x^(2),,1,,x),(x,,x^(2),,1):}|=0

Roots of the equations |{:(x,,m,,n,,1),(a,,x,,n,,1),(a,,b,,x,,1),(a,,b,,c,,1):}|=0 are

Product of roots of equation |(1+2x,1,1-x),(2-x,2+x,3+x),(x,1+x,1-x^2)|=0 is

If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 are real and distinct and f(x)=(1-x)/(1+x) then f(f(x))+f(f(1/x)) is equal to

If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then find the value of the determinant |(1+a,1 ,1), (1, 1+b,1),( 1, 1 ,1+c)| .

Solutions of the equation x|x+1|+1=0 are

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  2. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  19. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |