Home
Class 12
MATHS
|{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc...

`|{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}|` is equal to

A

1

B

0

C

3

D

`a+b+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} 1+a & c & 1+bc \\ 1+a & b & 1+bc \\ 1+a & e & 1+bc \end{vmatrix} \), we can follow these steps: ### Step 1: Write down the determinant We start with the given determinant: \[ D = \begin{vmatrix} 1+a & c & 1+bc \\ 1+a & b & 1+bc \\ 1+a & e & 1+bc \end{vmatrix} \] ### Step 2: Simplify the determinant Notice that the first column has the same entry \( 1+a \) in all three rows. This suggests that we can perform row operations to simplify the determinant. We can subtract the first row from the second and third rows. Perform the following operations: - \( R_2 \rightarrow R_2 - R_1 \) - \( R_3 \rightarrow R_3 - R_1 \) This gives us: \[ D = \begin{vmatrix} 1+a & c & 1+bc \\ 0 & b-c & 0 \\ 0 & e-c & 0 \end{vmatrix} \] ### Step 3: Factor out common terms Now we can see that the second and third rows have zeros in the first column. We can factor out the common terms from the second and third rows: \[ D = (1+a) \begin{vmatrix} 1 & c & 1+bc \\ 0 & b-c & 0 \\ 0 & e-c & 0 \end{vmatrix} \] ### Step 4: Evaluate the determinant The determinant can be evaluated using the property that if any two rows (or columns) of a determinant are identical, the determinant is zero. Here, since the second and third rows are multiples of each other (both have zeros in the first column), we conclude: \[ D = 0 \] ### Final Result Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}| is independent of

The value of the determinant |{:(1,bc,a(b+c)),(1,ca,b(a+c)),(1, ab,c(a+b)):}| doesn't depend on

|(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,ab):}|=|{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}| where a,b,c are distinct positive reals then the possible values of abc is // are

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4, 1+bc+b^2c^2),(1+ac+a^2c^2, 1+bc+b^2c^2, 1+c^2c^4)| is equal to

1/log_(ab)(abc)+1/log_(bc)(abc)+1/log_(ca)(abc) is equal to:

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

a , b , c are three complex numbers on the unit circle |z|=1 , such that abc=a+b+c . Then |ab+bc+ca| is equal to

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  2. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  19. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |