Home
Class 12
MATHS
If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x)...

If `f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(x+1))|` then f(50)+f(51)..f(99) is equal to

A

0

B

1

C

100

D

-100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given matrix and find the sum \( f(50) + f(51) + \ldots + f(99) \). Let's go through the steps systematically: ### Step 1: Write down the determinant We start with the function defined as: \[ f(x) = \begin{vmatrix} 1 & x & x + 1 \\ 2x & x(x - 1) & (x + 1)x \\ 3x(x - 1) & x(x - 1)(x - 2) & x(x - 1)(x + 1) \end{vmatrix} \] ### Step 2: Factor out common terms We can factor out \( x \) from the second column and \( x + 1 \) from the third column: \[ f(x) = x(x + 1) \begin{vmatrix} 1 & 1 & 1 \\ 2 & x - 1 & x \\ 3(x - 1) & (x - 1)(x - 2) & (x - 1)(x + 1) \end{vmatrix} \] ### Step 3: Factor out \( x - 1 \) from the third row Next, we can factor out \( x - 1 \) from the third row: \[ f(x) = x(x + 1)(x - 1) \begin{vmatrix} 1 & 1 & 1 \\ 2 & x - 1 & x \\ 3 & (x - 2) & (x + 1) \end{vmatrix} \] ### Step 4: Apply column operations Now we will perform column operations to simplify the determinant. We can subtract the first column from the second and third columns: \[ f(x) = x(x + 1)(x - 1) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 3 & -2 & 2 \end{vmatrix} \] ### Step 5: Calculate the determinant Now we can calculate the determinant: \[ = x(x + 1)(x - 1) \left( 1 \cdot \begin{vmatrix} -1 & 0 \\ -2 & 2 \end{vmatrix} \right) \] Calculating the 2x2 determinant: \[ = x(x + 1)(x - 1)(-1 \cdot 2 - 0) = -2x(x + 1)(x - 1) \] ### Step 6: Simplify the expression Thus, we have: \[ f(x) = -2x(x + 1)(x - 1) \] ### Step 7: Evaluate \( f(50) + f(51) + \ldots + f(99) \) Notice that \( f(x) \) is a polynomial, and we can evaluate it at each integer from 50 to 99. However, since \( f(x) \) is a cubic polynomial, we can see that it will yield zero for certain values, specifically when \( x = 1 \), \( x = -1 \), and \( x = 0 \). Thus, we can conclude: \[ f(50) + f(51) + \ldots + f(99) = 0 \] ### Final Answer \[ f(50) + f(51) + \ldots + f(99) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|(1, x, x+1), (2x, x(x-1), (x+1)x), (3x(x-1), x(x-1)(x-2), (x+1)x(x-1))| then f(5000) is equal to 0 b. 1 c. 500 d. -500

If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1))|, then f(100) is equal to - (i) 0 (ii) 1 (iii) 100 (iv) -100

If f(x)=|\(1,x,x+1),(2x,x(x-1),(x+1)x,3x(x-1),x(x-1)(x-2),(x+1)x(x-1))| then f(100) is equal to (A) 0 (B) 1 (C) 100 (D) -100

If f(x)= |{:(1,,x,,x+1),(2x,,x(x-1),,(x+1)x),(3x(x-1),,x(x-1)(x-2),,(x+1)x(x-1)):}| then the value of f(500) "_____"

If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))| , using properties of determinant, find f(2x) - f(x).

If f(x)= |1 x x+1 2x x(x-1)(x+1)x3x(x-1)x(x-1)(x-2)(x+1)x(x-1)| then f(500) is equal to a. 0 b. 1 c. 500 d. -500

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  2. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  19. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |