Home
Class 12
MATHS
If s=(a+b+c),then value of |{:(s+c,a,b),...

If s=(a+b+c),then value of `|{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|`is

A

`2s^2`

B

`2s^3`

C

`s^3`

D

`3s^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( | \begin{pmatrix} s+c & a & b \\ c & s+a & b \\ c & a & s+b \end{pmatrix} | \) where \( s = a + b + c \), we can follow these steps: ### Step 1: Substitute \( s \) First, we substitute \( s \) with \( a + b + c \) in the determinant. \[ | \begin{pmatrix} (a+b+c) + c & a & b \\ c & (a+b+c) + a & b \\ c & a & (a+b+c) + b \end{pmatrix} | \] This simplifies to: \[ | \begin{pmatrix} a+b+2c & a & b \\ c & a+b+c & b \\ c & a & a+b+c \end{pmatrix} | \] ### Step 2: Perform Row Operations We will perform row operations to simplify the determinant. Let's subtract the second row from the first row: \[ R_1 \rightarrow R_1 - R_2 \] This gives us: \[ | \begin{pmatrix} (a+b+2c) - c & a - (a+b+c) & b - b \\ c & a+b+c & b \\ c & a & a+b+c \end{pmatrix} | \] Calculating the first row: - First element: \( (a+b+2c) - c = a + b + c \) - Second element: \( a - (a+b+c) = -b - c \) - Third element: \( b - b = 0 \) So, the determinant now looks like: \[ | \begin{pmatrix} a+b+c & -b-c & 0 \\ c & a+b+c & b \\ c & a & a+b+c \end{pmatrix} | \] ### Step 3: Factor Out Common Terms Next, we can factor out \( c \) from the second and third rows: \[ | \begin{pmatrix} a+b+c & -b-c & 0 \\ c & a+b+c & b \\ c & a & a+b+c \end{pmatrix} | \] ### Step 4: Further Row Operations Now, let's perform another row operation: \( R_2 \rightarrow R_2 - R_3 \): \[ | \begin{pmatrix} a+b+c & -b-c & 0 \\ c - c & (a+b+c) - a & b - (a+b+c) \\ c & a & a+b+c \end{pmatrix} | \] This results in: \[ | \begin{pmatrix} a+b+c & -b-c & 0 \\ 0 & b+c & -a \\ c & a & a+b+c \end{pmatrix} | \] ### Step 5: Expand the Determinant Now we can expand this determinant: \[ = (a+b+c) \cdot | \begin{pmatrix} b+c & -a \\ a & a+b+c \end{pmatrix} | \] Calculating the 2x2 determinant: \[ = (a+b+c) \cdot ((b+c)(a+b+c) - (-a)(a)) = (a+b+c) \cdot (ab + ac + bc + b^2 + c^2 + a^2) \] ### Step 6: Substitute Back \( s \) Since \( s = a + b + c \): \[ = s \cdot (s^2) = s^3 \] ### Final Result Thus, the value of the determinant is: \[ \boxed{2s^3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Without expanding show that, if s= a +b +c, then 2s is a factor of |{:( s+c, a,b),(c, s+a, b),(c,a,s+b):}|

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

Let a+b+c =s and |{:(s+c,,a,,b),(c,,s+a,,b),(c,,a,,s+b):}|=432 then the value of s is "____"

If a=7,\ b=5,\ c=3, then the value of a^2+b^2+c^2-a b-b c-c a\ i s -12 (b) 0 (c) 8 (d) 12

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If {:S=[(a,b),(c,d)]:} , then adj S is equal to

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

If c^2 = a^2 + b^2, 2s = a + b + c , then 4s(s-a) (s - b)(s-c)

If the angles of ∆ABC are in ratio 1:1:2, respectively (the largest angle being angle C), then the value of s e c A c o s e c B secAcosecB - t a n A c o t B tanAcotB is (a) 0 (b) 1/2 (c) 1 (d) √3/2

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  2. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  19. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |