Home
Class 12
MATHS
If a, b,c> 0 and x,y,z in RR then the d...

If `a, b,c> 0` and `x,y,z in RR` then the determinant `|((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)|` is equal to:

A

(a) `0`

B

(b) `2abc`

C

(c) `a^2b^2c^2`

D

(d) `abc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} (a^x + a^{-x})^2 & (a^x - a^{-x})^2 & 1 \\ (b^y + b^{-y})^2 & (b^y - b^{-y})^2 & 1 \\ (c^z + c^{-z})^2 & (c^z - c^{-z})^2 & 1 \end{vmatrix} \] we will follow these steps: ### Step 1: Simplify the elements of the determinant We can denote: - \( A = a^x \) - \( B = b^y \) - \( C = c^z \) Thus, we can rewrite the determinant as: \[ D = \begin{vmatrix} (A + A^{-1})^2 & (A - A^{-1})^2 & 1 \\ (B + B^{-1})^2 & (B - B^{-1})^2 & 1 \\ (C + C^{-1})^2 & (C - C^{-1})^2 & 1 \end{vmatrix} \] ### Step 2: Use properties of determinants We can use the property of determinants that allows us to perform column operations. Specifically, we can subtract the second column from the first column: \[ D = \begin{vmatrix} (A + A^{-1})^2 - (A - A^{-1})^2 & (A - A^{-1})^2 & 1 \\ (B + B^{-1})^2 - (B - B^{-1})^2 & (B - B^{-1})^2 & 1 \\ (C + C^{-1})^2 - (C - C^{-1})^2 & (C - C^{-1})^2 & 1 \end{vmatrix} \] ### Step 3: Simplify the first column Now we simplify the first column: \[ (A + A^{-1})^2 - (A - A^{-1})^2 = (A^2 + 2 + A^{-2}) - (A^2 - 2 + A^{-2}) = 4 \] Thus, the first column becomes \( [4, 4, 4] \): \[ D = \begin{vmatrix} 4 & (A - A^{-1})^2 & 1 \\ 4 & (B - B^{-1})^2 & 1 \\ 4 & (C - C^{-1})^2 & 1 \end{vmatrix} \] ### Step 4: Factor out the common term Since the first column is now constant (all entries are 4), we can factor out 4: \[ D = 4 \begin{vmatrix} 1 & (A - A^{-1})^2 & 1 \\ 1 & (B - B^{-1})^2 & 1 \\ 1 & (C - C^{-1})^2 & 1 \end{vmatrix} \] ### Step 5: Recognize the determinant structure Notice that the first and third columns are identical. Therefore, the determinant evaluates to zero: \[ D = 4 \cdot 0 = 0 \] ### Conclusion Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that the value of each the following determinants is zero: |[(a^x+a^(-x))^2,(a^x-a^(-x))^2 ,1],[(b^y+b^(-y))^2,(b^y-b^(-y))^2 ,1],[(c^z+c^(-z))^2,(c^z-c^(-z))^2, 1]|

Without expanding,FIND "Delta"=|(((a-x)^2),((a-y)^2),((a-z)^2)),(((b-x)^2),((b-y)^2),((b-z)^2)),(((c-x)^2),((c-y)^2),((c-z)^2))|

If x,y,z are in G.P and a^x=b^y=c^z ,then

Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If a ,b ,c ,d ,e , and f are in G.P. then the value of |((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)| depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

Let A={a,b,c,d} and B={x,y,z} . Which of the following are relations from A to B? {(a,x),(b,y),(c,z),z}

If x y z=0, then find the value of (a^x)^(y z)+(a^y)^(z x)+(a^z)^(x y)= (a)3 (b) 2 (c)1 (d) 0

If a,b and c are A.P. whereas x,y and z are in G.P. : Prove that : x^(b-c)*y^(c-a)*z^(a-b)=1 .

If x = a sec A cos B, y = b sec A sin B and z = c tan A, show that : (x^(2))/ (a^(2)) + (y^(2))/ (b^(2)) - (z^(2))/(c^(2)) = 1

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  2. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  19. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |