Home
Class 12
MATHS
The determinant D=|{:(cos(alpha+beta),-s...

The determinant `D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}|` is independent of :-

A

`alpha`

B

`beta`

C

`alpha" and "beta`

D

Neihter `alpha"nor"beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant \( D = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\cos \alpha & \sin \alpha & \cos \beta \end{vmatrix} \), we will follow a systematic approach to simplify it and determine its independence from the variables involved. ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\cos \alpha & \sin \alpha & \cos \beta \end{vmatrix} \] ### Step 2: Expand the determinant We can expand the determinant using the first row: \[ D = \cos(\alpha + \beta) \begin{vmatrix} \cos \alpha & \sin \beta \\ \sin \alpha & \cos \beta \end{vmatrix} - (-\sin(\alpha + \beta)) \begin{vmatrix} \sin \alpha & \sin \beta \\ -\cos \alpha & \cos \beta \end{vmatrix} + \cos(2\beta) \begin{vmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} \cos \alpha & \sin \beta \\ \sin \alpha & \cos \beta \end{vmatrix} = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \cos(\alpha + \beta) \) 2. \( \begin{vmatrix} \sin \alpha & \sin \beta \\ -\cos \alpha & \cos \beta \end{vmatrix} = \sin \alpha \cos \beta + \sin \beta \cos \alpha = \sin(\alpha + \beta) \) 3. \( \begin{vmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{vmatrix} = \sin^2 \alpha + \cos^2 \alpha = 1 \) ### Step 4: Substitute back into the determinant Substituting these results back into the expression for \( D \): \[ D = \cos(\alpha + \beta) \cdot \cos(\alpha + \beta) + \sin(\alpha + \beta) \cdot \sin(\alpha + \beta) + \cos(2\beta) \cdot 1 \] \[ D = \cos^2(\alpha + \beta) + \sin^2(\alpha + \beta) + \cos(2\beta) \] ### Step 5: Apply Pythagorean identity Using the Pythagorean identity \( \cos^2 x + \sin^2 x = 1 \): \[ D = 1 + \cos(2\beta) \] ### Step 6: Simplify further Using the double angle formula \( \cos(2\beta) = 2\cos^2(\beta) - 1 \): \[ D = 1 + (2\cos^2(\beta) - 1) = 2\cos^2(\beta) \] ### Conclusion The final expression for the determinant is: \[ D = 2\cos^2(\beta) \] This shows that \( D \) is independent of \( \alpha \) and depends only on \( \beta \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

Evaluate: =|[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be (a) -sinalpha (b) sinbeta (c) cosalpha (d) cosbeta

Evaluate |{:(cos alpha cos beta,,cos alphasinbeta,,-sinalpha),(-sinbeta,,cos beta,,0),(sinalpha cos beta,,sinalphasinbeta,,cos alpha):}|

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION A
  1. The value of theta lying between theta=0 and theta=pi/2 and satisfying...

    Text Solution

    |

  2. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  19. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |