Home
Class 12
MATHS
The system of equations x - y cos the...

The system of equations
`x - y cos theta + z cos 2theta =0`
`-xcostheta+y-zcostheta=0`
`x cos 2theta-ycostheta + z=0`
has non-trivial solution for `theta` equals

A

`pi/3`

B

`pi/6`

C

`(2pi)/3`

D

`pi/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations for non-trivial solutions, we need to analyze the determinant of the coefficients of the variables \(x\), \(y\), and \(z\). The equations are: 1. \(x - y \cos \theta + z \cos 2\theta = 0\) 2. \(-x \cos \theta + y - z \cos \theta = 0\) 3. \(x \cos 2\theta - y \cos \theta + z = 0\) ### Step 1: Write the system in matrix form We can represent the system of equations in matrix form as follows: \[ \begin{bmatrix} 1 & -\cos \theta & \cos 2\theta \\ -\cos \theta & 1 & -\cos \theta \\ \cos 2\theta & -\cos \theta & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 2: Calculate the determinant of the coefficient matrix To find the values of \(\theta\) for which the system has a non-trivial solution, we need to compute the determinant of the coefficient matrix and set it equal to zero: \[ D = \begin{vmatrix} 1 & -\cos \theta & \cos 2\theta \\ -\cos \theta & 1 & -\cos \theta \\ \cos 2\theta & -\cos \theta & 1 \end{vmatrix} \] ### Step 3: Expand the determinant Using the determinant formula for a 3x3 matrix, we can expand \(D\): \[ D = 1 \cdot \begin{vmatrix} 1 & -\cos \theta \\ -\cos \theta & 1 \end{vmatrix} - (-\cos \theta) \cdot \begin{vmatrix} -\cos \theta & -\cos \theta \\ \cos 2\theta & 1 \end{vmatrix} + \cos 2\theta \cdot \begin{vmatrix} -\cos \theta & 1 \\ \cos 2\theta & -\cos \theta \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 1 & -\cos \theta \\ -\cos \theta & 1 \end{vmatrix} = 1 - \cos^2 \theta = \sin^2 \theta\) 2. \(\begin{vmatrix} -\cos \theta & -\cos \theta \\ \cos 2\theta & 1 \end{vmatrix} = -\cos \theta \cdot 1 - (-\cos \theta)(\cos 2\theta) = -\cos \theta + \cos \theta \cos 2\theta\) 3. \(\begin{vmatrix} -\cos \theta & 1 \\ \cos 2\theta & -\cos \theta \end{vmatrix} = \cos \theta \cdot \cos \theta - 1 \cdot \cos 2\theta = \cos^2 \theta - \cos 2\theta\) Substituting these back into the determinant: \[ D = \sin^2 \theta + \cos \theta (-\cos \theta + \cos \theta \cos 2\theta) + \cos 2\theta (\cos^2 \theta - \cos 2\theta) \] ### Step 4: Simplify the determinant Now we simplify \(D\): \[ D = \sin^2 \theta - \cos^2 \theta + \cos^2 \theta \cos 2\theta + \cos 2\theta \cos^2 \theta - \cos^2 \theta \cos 2\theta \] This simplifies to: \[ D = \sin^2 \theta - \cos^2 \theta + \cos^2 \theta \cos 2\theta \] Using the identity \(\cos 2\theta = 2\cos^2 \theta - 1\): \[ D = \sin^2 \theta - \cos^2 \theta + \cos^2 \theta (2\cos^2 \theta - 1) \] ### Step 5: Set the determinant to zero Now we set \(D = 0\): \[ \sin^2 \theta - \cos^2 \theta + \cos^2 \theta (2\cos^2 \theta - 1) = 0 \] This can be solved for \(\theta\) to find the values where the determinant is zero, indicating non-trivial solutions. ### Step 6: Solve for \(\theta\) After simplification, we find that the equation holds for any \(\theta\) such that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] This is true for all \(\theta\). Thus, the system has a non-trivial solution for all real numbers \(\theta\). ### Final Answer The system of equations has non-trivial solutions for \(\theta\) belonging to all real numbers. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Solve cos theta+cos 3 theta-2 cos 2 theta=0 .

Solve cos theta+cos 2theta+cos 3theta=0 .

The solution set of sin 3theta + cos 2theta = 0 iss

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

If 0lt=thetalt=pi and the system of equations x=(sin theta)y+(cos theta)z y=z+(cos theta) x z=(sin theta) x+y has a non-trivial solution then (8theta)/(pi) is equal to

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

Consider the system of equations : x sintheta-2ycostheta-az=0 , x+2y+z=0 , -x+y+z=0 , theta in R

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is