Home
Class 12
MATHS
If f(x) and g(x) are functions such that...

If `f(x) and g(x)` are functions such that `f(x + y) = f(x) g(y) + g(x) f(y),` then in `|(f(alpha),g(alpha),f(alpha+theta)),(f(beta),g(beta),f(beta+theta)), (f(lambda),g(lambda),f(lambda+theta))|` is independent of

A

`alpha`

B

`beta`

C

`lambda`

D

`theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given determinant and the properties of the functions \( f(x) \) and \( g(x) \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We are given that: \[ f(x + y) = f(x)g(y) + g(x)f(y) \] This is a functional equation that relates the functions \( f \) and \( g \). 2. **Setting Up the Determinant**: We need to evaluate the determinant: \[ D = \begin{vmatrix} f(\alpha) & g(\alpha) & f(\alpha + \theta) \\ f(\beta) & g(\beta) & f(\beta + \theta) \\ f(\lambda) & g(\lambda) & f(\lambda + \theta) \end{vmatrix} \] 3. **Using the Functional Equation**: We can express \( f(\alpha + \theta) \), \( f(\beta + \theta) \), and \( f(\lambda + \theta) \) using the given functional equation: \[ f(\alpha + \theta) = f(\alpha)g(\theta) + g(\alpha)f(\theta) \] \[ f(\beta + \theta) = f(\beta)g(\theta) + g(\beta)f(\theta) \] \[ f(\lambda + \theta) = f(\lambda)g(\theta) + g(\lambda)f(\theta) \] 4. **Substituting into the Determinant**: Substitute these expressions into the determinant: \[ D = \begin{vmatrix} f(\alpha) & g(\alpha) & f(\alpha)g(\theta) + g(\alpha)f(\theta) \\ f(\beta) & g(\beta) & f(\beta)g(\theta) + g(\beta)f(\theta) \\ f(\lambda) & g(\lambda) & f(\lambda)g(\theta) + g(\lambda)f(\theta) \end{vmatrix} \] 5. **Applying Determinant Properties**: We can apply the determinant property \( C_3 \to C_3 - g(\theta)C_1 - f(\theta)C_2 \): \[ D = \begin{vmatrix} f(\alpha) & g(\alpha) & 0 \\ f(\beta) & g(\beta) & 0 \\ f(\lambda) & g(\lambda) & 0 \end{vmatrix} \] 6. **Evaluating the Determinant**: Since the third column is now all zeros, the determinant \( D \) evaluates to zero: \[ D = 0 \] 7. **Conclusion**: Since the determinant is zero, it is independent of \( \alpha \), \( \beta \), \( \lambda \), and \( \theta \). ### Final Answer: The value of the determinant is independent of \( \alpha, \beta, \lambda, \) and \( \theta \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

Let f(x) be a function such that f(x), f'(x) and f''(x) are in G.P., then function f(x) is

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f (x) is a function such that f (x) + f''(x) =0 and g (x)= (f (x))^(2) +(f' (x))^(2) and g (3) =8, then g (8)=

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

Let f(x)=x^2 and g(x) = 2x + 1 be two real functions. find (f +g)(x) , (f-g)(x) , (fg)(x) , (f/g)(x) .

Let f and g be two differentiable functions on R such that f'(x)>0 and g′(x) g(f(x-1)) (b) f(g(x))>f(g(x+1)) (c) g(f(x+1))

f:R to R is a function defined by f(x)= 10x -7, if g=f^(-1) then g(x)=