Home
Class 12
MATHS
The value of the determinant |{:(1,bc,a(...

The value of the determinant `|{:(1,bc,a(b+c)),(1,ca,b(a+c)),(1, ab,c(a+b)):}|` doesn't depend on

A

a

B

b

C

c

D

a + b + c

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(a+c) \\ 1 & ab & c(a+b) \end{vmatrix} \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(a+c) \\ 1 & ab & c(a+b) \end{vmatrix} \] ### Step 2: Apply Row Operations We can simplify the determinant using row operations. Subtract the first row from the second and third rows: \[ R_2 \to R_2 - R_1 \quad \text{and} \quad R_3 \to R_3 - R_1 \] This gives us: \[ \Delta = \begin{vmatrix} 1 & bc & a(b+c) \\ 0 & ca - bc & b(a+c) - a(b+c) \\ 0 & ab - bc & c(a+b) - a(b+c) \end{vmatrix} \] ### Step 3: Simplify the Second and Third Rows Now we simplify the second and third rows: - For \( R_2 \): \( b(a+c) - a(b+c) = ba + bc - ab - ac = b(a-c) + c(b-a) \) - For \( R_3 \): \( c(a+b) - a(b+c) = ca + cb - ab - ac = c(a-b) + a(b-c) \) So we have: \[ \Delta = \begin{vmatrix} 1 & bc & a(b+c) \\ 0 & ca - bc & b(a-c) \\ 0 & ab - bc & c(a-b) \end{vmatrix} \] ### Step 4: Factor Out Common Terms We can factor out common terms from the second and third rows: \[ \Delta = \begin{vmatrix} 1 & bc & a(b+c) \\ 0 & c(a-b) & b(a-c) \\ 0 & a(b-c) & c(a-b) \end{vmatrix} \] ### Step 5: Calculate the Determinant Now we can calculate the determinant: \[ \Delta = 1 \cdot \begin{vmatrix} c(a-b) & b(a-c) \\ a(b-c) & c(a-b) \end{vmatrix} \] Calculating this 2x2 determinant: \[ = c(a-b) \cdot c(a-b) - b(a-c) \cdot a(b-c) \] This results in: \[ = c^2(a-b)^2 - ab(a-c)(b-c) \] ### Step 6: Analyze the Result The determinant simplifies to a form that shows it depends on \( a, b, c \). However, since we have a factor of zero from our row operations, we conclude: \[ \Delta = 0 \] ### Conclusion Thus, the value of the determinant does not depend on \( a, b, c \) because it evaluates to zero. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - B|21 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

The vlaue of the determinant |(b+c, a, a),(b, c+a, b),(c,c,a+b)| (A) depends on a (B) depends on b (C) depends on c (D) dependent of a,b,c

Write the value of the determinant |[a,1,b+c], [b,1,c+a] ,[c,1,a+b]| .

if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| is positivie then (a,b,c lt 0)

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

Without expanding at any state, prove that |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|=0

Find the value of the determinant |(bc,ca, ab),( p, q, r),(1, 1, 1)|, where a ,b ,a n d c are respectively, the pth, qth, and rth terms of a harmonic progression.

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to