Home
Class 12
MATHS
Consider matrix A=[a(ij)](nxxn). Form t...

Consider matrix `A=[a_(ij)]_(nxxn)`. Form the matrix `A-lamdal, lamda` being a number, real of complex.
`A-lamdal=[{:(a_11-lamda,a_12,...,a_(1n)),(s_21,a_22-lamda,...,a_(2n)),(...,...,...,...),(a_(n1),a_(n2),...,a_(n n)-lamda):}]`
Then det `(A-lamdaI)=(-1)^n[lamda^n+b_1lamda^(n-1)+b_2lamda^(n-2)+...+b_(n)]`.
An important rheorem tells us that the matrix A satisfies the equation `X^n+b_1x^(n-1)+b_2x^(n-2)+...+b_2=0.` This equation is called hte characteristic equation of A. For all the questions on theis passeage, take `A=[{:(1,4),(2,3):}]`
The matrix A satisfies the matrix equation

A

(a)`A^2-4A-5l=0`

B

(b)`A^2-4A-5=0`

C

(c)`A^2+5A-5l=0`

D

(d)`A^2+4A-5=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the procedure outlined in the video transcript. ### Step 1: Define the Matrix A Given the matrix \( A \): \[ A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \] ### Step 2: Form the Matrix \( A - \lambda I \) The identity matrix \( I \) for a \( 2 \times 2 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \( \lambda I \) is: \[ \lambda I = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \] Now, we compute \( A - \lambda I \): \[ A - \lambda I = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 4 \\ 2 & 3 - \lambda \end{pmatrix} \] ### Step 3: Compute the Determinant Next, we need to find the determinant of the matrix \( A - \lambda I \): \[ \text{det}(A - \lambda I) = (1 - \lambda)(3 - \lambda) - (4)(2) \] Calculating this gives: \[ = (1 - \lambda)(3 - \lambda) - 8 \] Expanding the determinant: \[ = 3 - \lambda - 3\lambda + \lambda^2 - 8 \] \[ = \lambda^2 - 4\lambda - 5 \] ### Step 4: Set the Characteristic Equation The characteristic equation is set by equating the determinant to zero: \[ \lambda^2 - 4\lambda - 5 = 0 \] ### Step 5: Write the Matrix Equation We can express this characteristic equation in terms of the matrix \( A \): \[ A^2 - 4A - 5I = 0 \] where \( I \) is the identity matrix. ### Final Result Thus, the matrix \( A \) satisfies the equation: \[ A^2 - 4A - 5I = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - G|5 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Consider matrix A=[a_(ij)]_(nxxn) . Form the matrix A-lamdal, lamda being a number, real of complex. A-lamdal=[{:(a_11-lamda,a_12,...,a_(1n)),(s_21,a_22-lamda,...,a_(2n)),(...,...,...,...),(a_(n1),a_(n2),...,a_(n n)-lamda):}] Then det (A-lamdaI)=(-1)^n[lamda^n+b_1lamda^(n-1)+b_2lamda^(n-2)+...+b_(n)] . An important rheorem tells us that the matrix A satisfies the equation X^n+b_1x^(n-1)+b_2x^(n-2)+...+b_2=0. This equation is called hte characteristic equation of A. For all the questions on theis passeage, take A=[{:(1,4),(2,3):}] Which of the follwing is inverse fo A ?

If matrix a satisfies the equation A^(2)=A^(-1) , then prove that A^(2^(n))=A^(2^((n-2))), n in N .

If |a_(i)|lt1lamda_(i)ge0 for i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1 then the value of |lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)| is :

If there are three square matrix A, B, C of same order satisfying the equation A^2=A^-1 and B=A^(2^n) and C=A^(2^((n-2)) , then prove that det .(B-C) = 0, n in N .

If the polynomial equation a_n x^n + a_(n-1) x^(n-1) + a_(n-2) x^(n-2) + ....... + a_0 = 0, n being a positive integer, has two different real roots a and b . then between a and b the equation na_n x^(n-1) +(n-1)a_(n-1) x^(n-2) +.......+a_1 =0 has

If the equation a_(n)x^(n)+a_(n-1)x^(n-1)+..+a_(1)x=0, a_(1)!=0, n ge2 , has a positive root x=alpha then the equation na_(n)x^(n-1)+(n-1)a_(n-1)x^(n-2)+….+a_(1)=0 has a positive root which is

If a_(1)=a, a_(2)=b, a_(n+2)=(a_(n+1)+a_(n))/2, nge 0 then lim_(n to oo) a_(n) is (a+lamda_(1)b)/(lamda_(2)), (lamda_(1),lamda_(2) epsilonI) where lamda_(1)+lamda_(2) is _______

The number of real roots of the equation 1+a_(1)x+a_(2)x^(2)+………..a_(n)x^(n)=0 , where |x| lt (1)/(3) and |a_(n)| lt 2 , is

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)

If a_(1)=1, a_(2)=1, and a_(n)=a_(n-1)+a_(n-2) for n ge 3, find the first 7 terms of the sequence.

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - D
  1. A is a matric of order 3 xx 3. If A'=A and five entries in the matrix ...

    Text Solution

    |

  2. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  3. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  4. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  5. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  6. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  7. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  8. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  9. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  10. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  11. Consider the matrix A=[{:(0,-h,-g),(h,0,-f),(g,f, 0):}] STATEMENT-1 :...

    Text Solution

    |

  12. Consider the determinants Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'...

    Text Solution

    |

  13. <b>Statement 1</b>: Matrix [{:(a,0,0,0),(0,b,0,0),(0,0,c,0):}] is a di...

    Text Solution

    |

  14. A square matrix [a(ij)] such that a(ij)=0 for i ne j and a(ij) = k whe...

    Text Solution

    |

  15. STATEMENT-1 : The system of equations x + ky + 3z =0, 3x + ky - 2z =0,...

    Text Solution

    |

  16. Statement-1 f(x) = |{:((1+x)^(11),(1+x)^(12),(1+x)^(13)),((1+x)^(21),(...

    Text Solution

    |