Home
Class 12
MATHS
Consider matrix A=[a(ij)](nxxn). Form t...

Consider matrix `A=[a_(ij)]_(nxxn)`. Form the matrix `A-lamdal, lamda` being a number, real of complex.
`A-lamdal=[{:(a_11-lamda,a_12,...,a_(1n)),(s_21,a_22-lamda,...,a_(2n)),(...,...,...,...),(a_(n1),a_(n2),...,a_(n n)-lamda):}]`
Then det `(A-lamdaI)=(-1)^n[lamda^n+b_1lamda^(n-1)+b_2lamda^(n-2)+...+b_(n)]`.
An important rheorem tells us that the matrix A satisfies the equation `X^n+b_1x^(n-1)+b_2x^(n-2)+...+b_2=0.` This equation is called hte characteristic equation of A. For all the questions on theis passeage, take `A=[{:(1,4),(2,3):}]`
Which of the follwing is inverse fo A ?

A

(a)`1/5(A-4l)`

B

(b)`1/5(A+4l)`

C

(c)`1/4(A-5l)`

D

(d)`1/4(A+5l)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 1 \) - \( b = 4 \) - \( c = 2 \) - \( d = 3 \) Calculating the determinant: \[ \text{det}(A) = (1)(3) - (4)(2) = 3 - 8 = -5 \] ### Step 2: Find the adjugate of matrix \( A \) The adjugate of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} 3 & -4 \\ -2 & 1 \end{pmatrix} \] ### Step 3: Calculate the inverse of matrix \( A \) The inverse of matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-5} \cdot \begin{pmatrix} 3 & -4 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{pmatrix} \] ### Step 4: Verify the inverse To verify that this is indeed the inverse, we can multiply \( A \) and \( A^{-1} \) and check if we get the identity matrix: \[ A \cdot A^{-1} = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{pmatrix} \] Calculating the product: - First row, first column: \( 1 \cdot -\frac{3}{5} + 4 \cdot \frac{2}{5} = -\frac{3}{5} + \frac{8}{5} = 1 \) - First row, second column: \( 1 \cdot \frac{4}{5} + 4 \cdot -\frac{1}{5} = \frac{4}{5} - \frac{4}{5} = 0 \) - Second row, first column: \( 2 \cdot -\frac{3}{5} + 3 \cdot \frac{2}{5} = -\frac{6}{5} + \frac{6}{5} = 0 \) - Second row, second column: \( 2 \cdot \frac{4}{5} + 3 \cdot -\frac{1}{5} = \frac{8}{5} - \frac{3}{5} = 1 \) Thus, \( A \cdot A^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), confirming that \( A^{-1} \) is correct. ### Final Answer: The inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - G|5 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Consider matrix A=[a_(ij)]_(nxxn) . Form the matrix A-lamdal, lamda being a number, real of complex. A-lamdal=[{:(a_11-lamda,a_12,...,a_(1n)),(s_21,a_22-lamda,...,a_(2n)),(...,...,...,...),(a_(n1),a_(n2),...,a_(n n)-lamda):}] Then det (A-lamdaI)=(-1)^n[lamda^n+b_1lamda^(n-1)+b_2lamda^(n-2)+...+b_(n)] . An important rheorem tells us that the matrix A satisfies the equation X^n+b_1x^(n-1)+b_2x^(n-2)+...+b_2=0. This equation is called hte characteristic equation of A. For all the questions on theis passeage, take A=[{:(1,4),(2,3):}] The matrix A satisfies the matrix equation

If |a_(i)|lt1lamda_(i)ge0 for i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1 then the value of |lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)| is :

If the polynomial equation a_n x^n + a_(n-1) x^(n-1) + a_(n-2) x^(n-2) + ....... + a_0 = 0, n being a positive integer, has two different real roots a and b . then between a and b the equation na_n x^(n-1) +(n-1)a_(n-1) x^(n-2) +.......+a_1 =0 has

If the equation a_(n)x^(n)+a_(n-1)x^(n-1)+..+a_(1)x=0, a_(1)!=0, n ge2 , has a positive root x=alpha then the equation na_(n)x^(n-1)+(n-1)a_(n-1)x^(n-2)+….+a_(1)=0 has a positive root which is

If a_(1)=a, a_(2)=b, a_(n+2)=(a_(n+1)+a_(n))/2, nge 0 then lim_(n to oo) a_(n) is (a+lamda_(1)b)/(lamda_(2)), (lamda_(1),lamda_(2) epsilonI) where lamda_(1)+lamda_(2) is _______

The number of real roots of the equation 1+a_(1)x+a_(2)x^(2)+………..a_(n)x^(n)=0 , where |x| lt (1)/(3) and |a_(n)| lt 2 , is

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)

If a_(1)=1, a_(2)=1, and a_(n)=a_(n-1)+a_(n-2) for n ge 3, find the first 7 terms of the sequence.

If a_(1)=1, a_(2)=5 and a_(n+2)=5a_(n+1)-6a_(n), n ge 1 , show by using mathematical induction that a_(n)=3^(n)-2^(n)

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - D
  1. A is a matric of order 3 xx 3. If A'=A and five entries in the matrix ...

    Text Solution

    |

  2. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  3. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  4. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  5. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  6. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  7. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  8. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  9. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  10. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  11. Consider the matrix A=[{:(0,-h,-g),(h,0,-f),(g,f, 0):}] STATEMENT-1 :...

    Text Solution

    |

  12. Consider the determinants Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'...

    Text Solution

    |

  13. <b>Statement 1</b>: Matrix [{:(a,0,0,0),(0,b,0,0),(0,0,c,0):}] is a di...

    Text Solution

    |

  14. A square matrix [a(ij)] such that a(ij)=0 for i ne j and a(ij) = k whe...

    Text Solution

    |

  15. STATEMENT-1 : The system of equations x + ky + 3z =0, 3x + ky - 2z =0,...

    Text Solution

    |

  16. Statement-1 f(x) = |{:((1+x)^(11),(1+x)^(12),(1+x)^(13)),((1+x)^(21),(...

    Text Solution

    |