Home
Class 12
MATHS
Consider the determinants Delta=|{:(2,-1...

Consider the determinants `Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'=|{:(2,0,-2),(-2,-1,1),(-4,1,3):}|`
STATEMENT-1 `Delta'=Delta^2`.
STATEMENT-2 : The determinant formed by the cofactors of the elements of a determinant of order 3 is equal in value to the square of the original determinant.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants given and verify the statements regarding them. ### Step 1: Calculate the determinant \( \Delta \) Given: \[ \Delta = \begin{vmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} \] Using the formula for the determinant of a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] Substituting the values: \[ \Delta = 2 \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - (-1) \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + 3 \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = (1)(1) - (1)(-1) = 1 + 1 = 2 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = (1)(1) - (1)(1) = 0 \) 3. \( \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = (1)(-1) - (1)(1) = -1 - 1 = -2 \) Now substituting back: \[ \Delta = 2(2) - (-1)(0) + 3(-2) = 4 + 0 - 6 = -2 \] ### Step 2: Calculate \( \Delta^2 \) Now we find \( \Delta^2 \): \[ \Delta^2 = (-2)^2 = 4 \] ### Step 3: Calculate the determinant \( \Delta' \) Given: \[ \Delta' = \begin{vmatrix} 2 & 0 & -2 \\ -2 & -1 & 1 \\ -4 & 1 & 3 \end{vmatrix} \] Using the same determinant formula: \[ \Delta' = 2 \begin{vmatrix} -1 & 1 \\ 1 & 3 \end{vmatrix} - 0 + (-2) \begin{vmatrix} -2 & -1 \\ -4 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 1 \\ 1 & 3 \end{vmatrix} = (-1)(3) - (1)(1) = -3 - 1 = -4 \) 2. \( \begin{vmatrix} -2 & -1 \\ -4 & 1 \end{vmatrix} = (-2)(1) - (-1)(-4) = -2 - 4 = -6 \) Now substituting back: \[ \Delta' = 2(-4) + 0 + (-2)(-6) = -8 + 0 + 12 = 4 \] ### Step 4: Verify the statements 1. **Statement 1**: \( \Delta' = \Delta^2 \) We found \( \Delta' = 4 \) and \( \Delta^2 = 4 \). Thus, Statement 1 is **true**. 2. **Statement 2**: The determinant formed by the cofactors of the elements of a determinant of order 3 is equal in value to the square of the original determinant. This is a known property of determinants: the determinant of the cofactor matrix (adjugate) of a matrix \( A \) is equal to \( \det(A)^{n-1} \) for an \( n \times n \) matrix. For \( n = 3 \), this means \( \det(\text{adj}(A)) = \det(A)^2 \). Thus, Statement 2 is also **true**. ### Conclusion Both statements are true.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - G|5 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Evalute the determinat Delta=|{:(1,3,-1),(0,1,2),(1,2,3):}|

Evaluate the determinant Delta=|(1,2,4),(-1,3,0),(4,1,0)|

Find minor of element 5 in the determinant Delta=|{:(2,4,3),(1,5,2),(-1,4,1):}|

Find minors and cofactors of all the elements of the determinant |[1,-2],[ 4 ,3]|

Find minors and cofactors of all the elements of determinant |{:(-1,2, 3),(-4,5,-2),(6,4, 8):}|

Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 9|

Write minros and cofactros of the elements of the determinants: (i) |{:(1,0,4),(3,5,-1),(0,1,2):}|

Calculate the value of the determinant |{:(1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20):}|

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

Write the minor and cofactor of each element of the following determinants and also evaluate the determinant in each case: |1,0,4],[3,5,-1],[0,1,2]|

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - D
  1. A is a matric of order 3 xx 3. If A'=A and five entries in the matrix ...

    Text Solution

    |

  2. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  3. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  4. Consider matrix A=[a(ij)](nxxn). Form the matrix A-lamdal, lamda bein...

    Text Solution

    |

  5. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  6. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  7. Matrix theory can be aplied to investigate the conditions under which ...

    Text Solution

    |

  8. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  9. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  10. A and B are two matrices of same order 3 xx 3, where A=[{:(1,2,3),(2,3...

    Text Solution

    |

  11. Consider the matrix A=[{:(0,-h,-g),(h,0,-f),(g,f, 0):}] STATEMENT-1 :...

    Text Solution

    |

  12. Consider the determinants Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'...

    Text Solution

    |

  13. <b>Statement 1</b>: Matrix [{:(a,0,0,0),(0,b,0,0),(0,0,c,0):}] is a di...

    Text Solution

    |

  14. A square matrix [a(ij)] such that a(ij)=0 for i ne j and a(ij) = k whe...

    Text Solution

    |

  15. STATEMENT-1 : The system of equations x + ky + 3z =0, 3x + ky - 2z =0,...

    Text Solution

    |

  16. Statement-1 f(x) = |{:((1+x)^(11),(1+x)^(12),(1+x)^(13)),((1+x)^(21),(...

    Text Solution

    |