Home
Class 12
MATHS
|{:(1,5,pi),(logee,5,sqrt5),(log10 10,5,...

`|{:(1,5,pi),(log_ee,5,sqrt5),(log_10 10,5,e):}|` is equal to…..

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & 5 & \pi \\ \log_e e & 5 & \sqrt{5} \\ \log_{10} 10 & 5 & e \end{vmatrix} \] we can follow these steps: ### Step 1: Simplify the logarithmic values We know that: - \(\log_e e = 1\) - \(\log_{10} 10 = 1\) So we can replace \(\log_e e\) and \(\log_{10} 10\) in the determinant: \[ D = \begin{vmatrix} 1 & 5 & \pi \\ 1 & 5 & \sqrt{5} \\ 1 & 5 & e \end{vmatrix} \] ### Step 2: Factor out common elements Notice that the first column of the determinant has all elements equal to 1. We can factor out the common element from the second column (which is 5): \[ D = 5 \cdot \begin{vmatrix} 1 & 1 & \pi \\ 1 & 1 & \sqrt{5} \\ 1 & 1 & e \end{vmatrix} \] ### Step 3: Identify identical rows Now, observe that the first two columns of the determinant are identical: \[ D = 5 \cdot \begin{vmatrix} 1 & 1 & \pi \\ 1 & 1 & \sqrt{5} \\ 1 & 1 & e \end{vmatrix} \] ### Step 4: Apply the property of determinants According to the properties of determinants, if two rows (or columns) of a determinant are identical, then the value of the determinant is zero: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - I|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

|{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,5sqrt(log_(5)3)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|" is equal to ""____"

log10 - log5

If "log"_(10)5 =x, " then log"_(5) 1250 equals to

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (b) 1/5 (c) 5 (d) none of these

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (b) 1/5 (c) 5 (d) none of these

The value of 5^(sqrtlog_5 7)-7^sqrt(log_7 5) is

The value of x, for which the ninth term in the expansion of {sqrt(10)/((sqrt(x))^(5log _(10)x ))+ x.x^(1/(2log_(10)x))}^(10) is 450 is equal to

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

Arrange (log)_2 5,(log)_(0. 5)5,(log)_7 5,(log)_3 5 in decreasing order.

Value of [log_(e^3)5^8 - log_(e^3)2^8] equals to