Home
Class 12
MATHS
If |{:(1+ax,1+bx,1+cx),(1+a1x,1+b1x,1+c1...

If `|{:(1+ax,1+bx,1+cx),(1+a_1x,1+b_1x,1+c_1x),(1+a_2x,1+b_2x,1+c_2x):}|=A_0+A_1x+A_2x^2+A ""_3x^3`, then `A_0` is

A

(a) -1

B

(b) 0

C

(c) 1

D

(d) 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} 1 + ax & 1 + bx & 1 + cx \\ 1 + a_1x & 1 + b_1x & 1 + c_1x \\ 1 + a_2x & 1 + b_2x & 1 + c_2x \end{vmatrix} \] We are tasked with finding the constant term \( A_0 \) in the polynomial expansion of this determinant, which is expressed as: \[ D = A_0 + A_1x + A_2x^2 + A_3x^3 \] ### Step 1: Simplifying the Determinant To simplify the determinant, we can perform column operations. We will subtract the first column from the second and third columns: \[ D = \begin{vmatrix} 1 + ax & (1 + bx) - (1 + ax) & (1 + cx) - (1 + ax) \\ 1 + a_1x & (1 + b_1x) - (1 + a_1x) & (1 + c_1x) - (1 + a_1x) \\ 1 + a_2x & (1 + b_2x) - (1 + a_2x) & (1 + c_2x) - (1 + a_2x) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 + ax & (b - a)x & (c - a)x \\ 1 + a_1x & (b_1 - a_1)x & (c_1 - a_1)x \\ 1 + a_2x & (b_2 - a_2)x & (c_2 - a_2)x \end{vmatrix} \] ### Step 2: Factoring Out \( x \) We can factor out \( x \) from the second and third columns: \[ D = x^2 \begin{vmatrix} 1 + ax & b - a & c - a \\ 1 + a_1x & b_1 - a_1 & c_1 - a_1 \\ 1 + a_2x & b_2 - a_2 & c_2 - a_2 \end{vmatrix} \] ### Step 3: Evaluating the Determinant Now, we need to evaluate the determinant: \[ D = x^2 \begin{vmatrix} 1 + ax & b - a & c - a \\ 1 + a_1x & b_1 - a_1 & c_1 - a_1 \\ 1 + a_2x & b_2 - a_2 & c_2 - a_2 \end{vmatrix} \] The first column contains terms that are linear in \( x \). Therefore, when we expand this determinant, all terms will be multiplied by \( x^2 \) or higher powers of \( x \). ### Step 4: Finding \( A_0 \) Since \( A_0 \) is the constant term of the polynomial, and we see that every term in the expansion of the determinant contains \( x^2 \) or higher, it follows that there are no constant terms independent of \( x \). Thus, we conclude that: \[ A_0 = 0 \] ### Final Answer The value of \( A_0 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - I|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If |(1 +ax,1 +bx,1 + bx),(1 +a_(1) x,1 +b_(1) x,1 + c_(1) x),(1 + a_(2) x,1 + b_(2) x,1 + c_(2) x)| = A_(0) + A_(1) x + A_(2) x^(2) + A_(3) x^(3) , then A_(1) is equal to

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to

If (e^(x) -1)^(2) =a_0 +a_(1)x +a_(2) x^2 + ......oo then a_4 =

If a_1x^2 + b_1 x + c_1 = 0 and a_2x^2 + b_2 x + c_2 = 0 has a common root, then the common root is

If (1+x -2x^2)^8 =1 +a_1x + a_2x^2+……+a_16x^16, then a_2+a_4+a_6+……+a_16 = ?

Consider the determinant Delta = |[a_1+b_1x^2,a_1x^2+b_1,c_1],[a_2+b_2x^2,a_2x^2+b_2,c_2],[a_3+b_3x^2,a_3x^2+b_3,c_3]| = 0 , \ w h e r e \ a_i ,b_i , c_i in R \ (i = 1,2,3) \ a n d \ x in R . Statement 1: The value of x satisfying Delta=0 are x=1,-1. Statement 2: If |[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]|=0,t h e n \ Delta=0.

If a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0 and |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 , then the given system has, 1) more than two solutions 2) one trivial and one non trivial solutions 3) no solution 4) only trivial solution (0, 0, 0)

If (lim)_(xvecoo)(2+(f(x))/(x^2))^(1/x)=e and f(x)=a_0+a_1x+a_2x^3+ , then